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ABSTRACT

The control of dynamic systems subject to abrupt, state-dependent
structural changes such as component failures, at random times, is
considered. This investigation is motivated by the need for design
techniques that yield fault-tolerant systems, in the sense that

they can perform satisfactorily despite untoward events. This work
concentrates on the tradeoffs between good performance and reliability
requirenments.

The approach used is to formulate discrete-time nonlinear
stochastic control problems that capture some of the issues of
fault tolerant control, and to analyze the behavior of the
controllers obtained by solving these problems.

These problems are approached using dynamic programming methods.
A preliminary result is the derivation for discrete-time noiseless
problems with Markovian structure, results analogous to existing
results in continuous time. In addition necessary and sufficient
conditions for the existence of a steady-state controller yielding
finite expected cost are obtained.

This preliminary result is then used to attack the harder
problems of state-dependent structure changes. The basic method
used is to convert the state-dependent problems into the comparison
of a set of constrained (in the state) problems that have state-indep-
endent transition probabilities. First systems where the structure
transition probabilities depend upon the state in a piecewise--
constant way are considered. For scalar problems with no input
noise an algorithm is obtained that determines the optimal controller
off line, in advance of system operation. For problems with additional
structure this algorithm collapses into the simultaneous solution of
a set of coupled difference equations that are similar to Riccati
equations.

Two examples of such problems are considered in detail; one
involves performance and reliability goals that are conflicting and
in the other case they are commensurate. Both cases are analyzed to
see how the optimal controller handles the tradeoff between these
goals. One controller action is to drive the state to the low cost
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goals. Then additive input noise, more genexal costs structures and
more general functional dependence of transition probabilities on

the state are considered. The additve noise changes the problem in

a fundamental way since the controller cannot position the state with
certainty. However an algorithm that yileds the optimal controller
can be obtained and qualitative properties of the controller can

be analyzed. -

Finally several extensions of these problems are considered.

Thesis Supervisor: Alan S. Willsky

Title: Associate Professor of Electrical Engineering and
Computer Science.
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1. INTRODUCTION

v\‘j/ This thesis considers the control of dynamic systems that
experience abrupt, structural changes at random times. These changes
are caused by phenomena such as component failures and repairs, and
large environmental disturbances. -

This document is divided into five parts. Part I contains
introductory, motivational and background material. It also presents
the perspective and conceptual basis of the work. A different class of
problems is considered in each of the next four parts. Part V closes
the thesis with a summary of results, concluding comments and suggestions

for further research.

1.1 Fault-Tolerant Systems

This thesis is motivated by the need for design techniques that

yield automatic systems that are fault-tolerant; that is, systems

which are are able to survive and adequately function despite the oc-
currence of component failures and other disruptions.l’z
Some examples of situations where there is need for fault-tolerant

system designs are when:

1
The term fault-tolerar.ce comes from digital computer design, where

fault refers to any disruption in the specified behavior of a system.
For example, see [ 5 1.

2 In (English translations of) Russian reliability theory literature,
a fault-tolerant system is any system having components that can be
repaired. For example, see [33 1.
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( . failures can jeopardize human lives, such as in

- 1life support systems,

- medical prosthetics,

- air traffic control systems,

- automated military systems,

a - systems for handling hazardous material,

- electric power plants (especially nuclear),

t - aircraft, manned spacecraftf trains, automobiles,
L elevators and other mechanized conveyances.

. failures have high monetary costs, such as in

- electric power distribution,

- automated manufacturing processes,
- communications systems. 1
f: . repair or maintenance by humans is inadvisable or
impossible, such as in

-~ deep-space vehicles,

- deep-water systenms,

: - systems operating in extreme temperature,
- radiocactive, biohazardous or toxic enviromments.

iR st

- We can identify three basic issues that must be taken into account

y in the design of fault-tolerant systems. They are

. the type and level of redundancy used,

_l'_\!".

- . the effects of failure-related uncertainties,

and

A

. conflicting system performance and reliability goals.

These design issues will be briefly discussed here.
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REDUNDANCY

Engineering systems have traditionally been made reliable
through the use of redundant caomponents, so that individual failures
need not be catastrophic to the entire system (and by the use of
highly reliable components and assembly procedures so that failures
are unlikely). Redundant components are used to detect failures and
to compensate for them. There are essentially two kinds of

redundancy that can be used:

direct redundancy - Multiple copies of the same component

are used, in 'voting' schemes for failure detection

and as 'backups' for failure compensation.

. functional redundancy - The system is designed so that

components and subsystems have overlapping

capabilities.

FAILURE- RELATED UNCERTAINTIES

Failure event uncertainties that must be addressed in fault-

tolerant system designs include:

. plant uncertainties =~ Pailure events change the system

state or dynamics in ways and at times that are

not known in advance.

. detection uncertainties - The ability to detect, isolate

and estimate failures is usually imperfect. The
possibilities of incorrect failure detections and

decisions must be taken into account in the system

design.
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CONFLICTING GOALS

The goals of reliability and fault-tolerance may conflict with
other system performance objectives. Here are three classes of
costs associated with the attaimment of fault-tolerance:

. Pixed costs - FPault-tolerant designs usually require

additional or different hardware that is not needed
during fault-free operation. This extra equipment

may involve not only purchase costs but also degraded

system performance (e.g., extra weight in aircraft).

. Hedging costs - The operation of a system so that it

is fault-tolerant may conflict with the optimal way
to operate the system in fault-free circumstances.
A cost, in terms of performance loss before failure,
is paid to improve the expected performance when

failures occur or to reduce the probability of failure.

. Maintenance costs - Preventive maintenance (and ins-

pection) results in direct costs (for parts, labor,
etc.) as well as performance losses while maintenance

activities are undertaken.

FOCUS OP THIS WORK

This thesis concentrates on the second fault-tolerance issue
listed above - the tradeoffs and conflicts between reliability goals

and system performance. Specifically, we consider the attainment of

fault-tolerance through control strategies, rather than by direct

redundancy.
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We seek control problem formulations that yield controller
designs which endow systems with fault-tolerance. An optimal fault-

tolerant controller should utilize all system capabilities and take

into account all known system limitations and failure likelihoods, so
as to achieve the best tradeoff between reliability and system

performance. We believe this to be an important step in the ongoing

-

development of theories and methods for fault-tolerant system design. ﬁ

1.2 Fault-Tolerant Control i
Fault-tolerant control is the use of control strategies to make

3
e

failure~prone systems responsive to untoward events. This requires ’
the 'building in' of fault-tolerance, by modelling how failures can
happen and what can be done to avoid or overcome them. In general,
fault-tolerant controllers will trade some degradation of performance

quality before failures occur for system 'survival' afterwards.

Lo
..AAA"

This may involve component repair, maintenance, or reconfiguration
of the control system.

From an examination of common engineering practices and
consideration of fault-tolerance needs of engineering systems, some
attributes that fault-tolerant controllers should possess can be
tdentified. We call them:

. Passive Hedging

. Active Hedging (Risk Reduction)
. Adaptability

. A .
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. Robustness

. Implementability.
These properties of fault-tolerant controllers are discussed in
this section.

Passive and active hedging require the balancing of conflicts

between system performance and reliability goals. Adaptability

involves the use of redundancy, probabilistic descriptionsof failure
occurrences, and the ability to detect them. Robustness and

implementability are necessary for successful operation of any fault-

tolerant controller.

PASSIVE HEDGING

This is simply taking into account the possibility of failures

(and associated costs) in the choice of control. For example, an

b automobile driver speeding around a curve might avoid the outer
!.- edge of the road, so that if a tire blowout occurs the system can still
L recover. Passive hedging does not involve using controls to affect

the probability of future failure event occurrences.

ACTIVE HEDGING (RISK REDUCTION)

Pronabilistic knowledge of failures may be used to alter their

hall 0 s & @
y-‘..' -'0. v

likelihoods. Preventive maintenance (replacement before failure)

is an example of this. If failure probabilities depend upon control

inputs (directly, or indirectly as a function of the system state)

P . . RN R
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then controls can be used to actively hedge as well as to minimize q
operating costs. For example, voltages and currents in an elec- :
trical system might be kept below levels that cause components to i
burn out. q

.
ADAPTABILITY

In general, some kind of on-line, real-time system testing
and failure detection process must take place. When a failure is
known to have occurred, 'contingency' controls are used. The

primary system goal may then become, for example

. degraded recovery - 'graceful degradation',

'fail-soft' operation

. safe shutdown - ('fail-safe' operation)

so as to avoid further system damage by continued

operation.

The system must detect its failures and reorganize itself to com-

pensate for them.

ROBUSTNESS AND IMPLEMENTABILITY

fault-tolerant controller designs should be robust in the sense
that they are insensitive to small disturbances and modelling
inaccuracies. Fault-tolerant control strategies must be implementable

in real-time if they are to be useful. Thi vrestricts the complexity

of controller designs.
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The controller designs that are obtained using any proposed
fault-tolerant control theory must be evaluated in terms of these
five attributes, to determine if the theory is meaningful. The task
at hand is to develop objective problem formulations that capture
these subjective fault-tolerance attributes. 1In particular, since we
are concerned here with the balancing of conflicting system performance
and reliability goals, we will focus on the hedging properties of

fault-tolerant controllers.

1.3 Modelling Fault~-Prone Systems

A key step in the development of any theory for system design
and analysis is the abstraction of physical reality by approximate
but representative mathematical models. To study fault-tolerant B
controllers we must first develop models that adequately capture the
salient characteristics of fault-prone systems. We need models that
are sufficiently realistic for the design of good fault-tolerant
controllers and are mathematically amenable to detailed analysis. We
also require tractable problems in order to gain insight into fault-
tolerant structures.
A characterizing attribute of fault-prone systems is their

operation in different forms or modes. Fault-prone systems experience

abrupt changes in their structure and state from phenomena such as
component failures and repairs, changing subsystem interconnections,

changes in operating points and abrupt environmental disturbances.




Each system form corresponds to some combination of these
events.
The state of a fault~-prone system can thus be decomposed into

two parts: a form process, which indicates the operational status

of the system, and the rest of the state which we call the x process.
A logical structure for modelling this kind of arrangement depicted

in figure 1.1. It is a feedback connection of two subsystems: a form

subsystem that describes abrupt structural changes in the system and
an x-subsystem that represents the dynamic evolution of the system

between form transitions.

Disturbances Outputs
Controls x

SUBSYSTEM | x

r
FORM Disturbances
SUBSYSTEM and Controls

Figure 1.1: General Hybrid System Structure.

lIn reliability theory the structural conditions of a system are usually
called modes (eg., normal mode, failure modes, etc.). In control
theory the term mode has a different meaning, and a third definition
pertains to statistical analysis. Since the problems we are investi-
gating draw from reliability theory, control theory and stochastic
processes, we have elected to avoid the term mode. Instead, form is
used to denote the operational status or structure of the systemn.
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The form is a stochastic process taking values in a finite set.
Its transition probabilities are dependent, in general, on the
x-subsystem state and control inputs. The x-subsystem is modelled by
deterministic or stochastic finite~dimensional vector differential
or difference equations. The parameters of these equations depend on
the form, which feeds into the x-subsystem.

The use of this kind of continuous-plus-discrete-state structure
to model fault-prone systems is not new. For example, some applications

are surveyed in [67]. These systems have been called stochastic hybrid

models by Willsky, et al [75] in the analysis of electric power
systems.

The use of stochastic models when representing fault-prone
systems is essential. As in other control analysis applications, the
system model used must successfully deal with sources of uncertainty
such as

. Sensor errors, measurement noise

. parameter errors and other modelling errors
in the mathematical representation of the
physical system

. external random disturbances (driving noises)
that effect the time evolution of the
system,

For fault-prone systems an additional source of uncertainty comes from
random disturbances that alter the gystem structure. Deterministic
system models just cannot adequately represent these fundamental

system characteristics.
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- In this thesis we restrict our attention to the fault-tolerant

PO S DRI

.

control of discrete-time systems. There are several reasons for

l‘ »
<

- doing this. The increasingly digital nature of control technolagy and
the inexpensive availability of microprocessors for components in
o 'smart' controllers make discrete-time models appropriate for con-

troller design and analysis. Since implementability is a required at-

t? tribute of fault-tolerant controllers, it seems preferable to avoid
z: problems arising from the discrete approximation of continuous-time
. designs, by obtaining discrete-time designs directly.
v
o In addition the discrete-time formulations of these problems are
more easily analyzed than continuous-time ones. When dynamic program- .
;‘ "3 ming is used to solve discrete-time trajectory control problems there i
;i is no partial differential equation that must be solved. Thus we can !
% sidestep the inability to solve the Bellman equation for control ;
problems with x-dependent form transition probabilities% This allows ]
iﬂ us to gain considerable conceptual insight into the structure of T
;; fault-tolerant control systens. ;
?‘ This research considers discrete-time systems that are special i
cases of the following model; 5
_ i
Xy = Alrx + Blru + Elx v (1.1) ;
S d
f Pr{rk+l=j|rk=i, x;+1=x, u, =u, qk=q} = pli,jix,u,q) (1,2)
‘ Xepr = RSIE Ty X)) (1.3) :
SR ]
:1 S lsee, for example, [70]. :
12 q
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Y, = C(rk)xk + D(rk)%c + A(rk)wk (1.4)

= The 'order of operations' is as follows:

i (1) at time k the system is in state (xk,rk)

(2) controls uk and qk are chosen

e bl

- (3) during time interval (k,k+l1), X1 is

m generated via (1.1)

3:{ (4) then 2 is generated according to (1.2),

::‘: based on xk+1. uk, qk and rk ]

= J
<

;! (5) when the form changes from T, to r, ., *

:::-_. xk+l may be "reset" to )ﬁ«-l' This resetting ]

- is generally nonlinear.

u {(6) The output of the x-subsystem, yk, is produced . ;

- by (1.4).

This convention allows for a failure or other form change to be
modelled as occurring at the final time K=N (when N<®}.
In the above
. time index k takes integer values

ke{ko,ko+1,...,N—1,N}

n
. xk € R X~process
m
i . \;lk € R x-controls
. ) . .
. vk € R x-driving noise

:::'.
e 13
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. yk € Rp x-subsystem output

. wk € Rp x-observation noise

The form process {rk: k=k0,---,N} takes values in a finite set

{l,z,...,M} M<o

r. €M

The form controls {qo,ql,...,qN_l} take values in a finite set

q €LS {1,2,...,1L} L<o

A(rk), B(rk), C(rk), D(rk). E(rk) and ZKrk) are appropriately-

dimensioned matrices where:

0 A(r)

open-loop x dynamics given the current

form r
B(r) = x-process input gain in form r 4
=(r) = =x-process driving noise gain in form r
C(r) = =x-process sensor gain in form r
D(r) = input-output direct link in form r ]

A(T) = =x-process observation noise gain in form r.

Thus the model (1.1)-(1.4) is sufficiently general to allow represen-
tation of form-dependence in dynamics, actuators, sensors and noise.

The form transition probabilities p(i,j:x,u,q) in (1.2) must

'.L_._.‘.L..p pos

obey

p(i,jrx,u,q)> 0 for all i,j € M 1

and all x,u,q

14
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M for each i €M
2 P(i.jix,urq)=l
i=1

,
.
3
!‘-_
.
.
b

and all X,4,9 .

The noise processes {vk} and {wk} are assumed to be 'white',

in that
Ellv, ~E(v,)]1' v ~E(v )1} = 0 s#k \

E{[wk-E(wk)]'[ws-E(ws)]} =0 s¥k

with unity variance matrices and

. all elements of vk and ws are independent

{(for all times k,s)

. all elements of v and x , and of w and x , v
k S k S :

are independent for all k>s

. all elements of vv and w, are independent of

k k
rs for all k>s.

A crucial consideration in the modelling of fault-prone systems

is the realistic representation of form transitions. There are two

basic kinds of transitions:

p
]

. independent of x

. Xx-dependent

The x-independent form transitions occur as though no x-to-r

feedback link exists in figure 1.1. They may be uncontrolled, or

L s e . A
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controlled by form controls’{qo,...,qn_l} that are not chosen in

oo sX }. Example of x-independent form shifts

response to {X N-1

OI
are random 'no wearout' component failures and lightning-induced
failures in electrical power distribution systems.

The x-dependent form transitions are always controllable in some

sense, either by form controls g, (which can be based on ) or
Xk can *%

through active hedging (by {uk} and the resulting x-process).

Examples of x-dependent form shifts in electrical power distribution
systems include the restructuring of a system when generator-protecting
relays and circuit-breakers trip, human operator control actions based
on observation of x-dynamics (such as switching on auxilary generators)
and transmission-line failures due to current overloads. Thus form

shifts can be totally unpredictable (as in random 'no wearout' component

failures), totally predictable (as in scheduled, deterministic actions)

or partially predictable (as in the switching of relays precisely (or

approximately) when a random quantity reaches a given threshold).
Suppose that the "reset" operation in (1.3) is linear. Then the

x-subsystem dynamics are linear in x and control u if the form process

{rk} does not depend on x. For such systems with x-dependent forms,
the only source of »-dynamics nonlinearity is through the form transition
probabilities.

In this thesis we will consider x-dependent form transition

probabilities that are piecewise-constant in x (or which can be

16
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approximated as such). This yields a kind of dynamics model that

is amenable to detailed analysis, since it consists of linear 'pieces'.

1.4 Formulating Fault-Tolerant Optimal Control Problems

A general fault-tolerant control system structure is shown in
figure 1.2. Both the x-controls {uo,...,uN_l} and the form controls

{q ""'qN-l} can depend upon possibly noisy observations of current

0]
(or past) values of the hybrid system state (x,r). If these quan-
tities are not perfectly cbservable then the design of x and r
estimators is an integral part of the overall fault-tolerant optimal
control problem.

When form transitions are x-dependent, imperfect knowledge of
X causes uncertainty about future form shifts even if r is perfectly
observed. When r is not perfectly observed, failure detection and
isolation (hence form estimation) usually involves some combination
of hypothesis testing ideas and dynamic stochastic estimators
(such as the Kalman filter). A thorough survey of failure detection
and isolation methods appears in the survey paper [ 74].

When the form is not perfectly observed, the control serves a
'dual' purpose. It can be used both to control the state and to probe

for information about it. Tradeoffs between control costs, the costs

resulting from incorrect form detection and the expected benefits of

probing must be considered in these cases. A general discussion of
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this 'dual control' phenomenon first appeared in 1960 in the work
of Fel'dbaum [24 ].

Two types of form control actions are possible:

. indirect form control - This is the control of the

probabilities of form transitions.

. direct form control - This involves control actions

that immediately, deterministically change r.

An example of indirect form control is preventive maintenance, which

improves failures probabilities (at same incurred cost). Switching to
backup systems in anticipation of (or response to) failures is an

example of direct form control.

Embedded in any fault-tolerant control problem is an implicit
criterion of system reliability. The problem formulation incorporates
models of failure occurrences, and reflects the relative importance

of variqus form~dependent costs.
RN VS SR DY o
In this thesis we  propose-extensions of the well-known linear
" o
quadratic Gaussian (LQG) control methodology to systems having

randomly jumping structures and parameters that are described by
T A
reliability-theoretic models. We cal. this the jump linear gquadratic

(JIQ) control problem. } P

\

The cost function to be minimized is quadratic in the x-control,

uk. If the system is in state (xi,ri) at time i, we want to minimize

X,

N-1
Iy (xgry) = B Egi U RiFe gl me + Q0 B T At | M)
1

+ QN[xN.rN]
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where the expectation is with regards to {vk}, {wk} and {rk}.
R: Mx L —R is a bounded positive-definite symmetric matrix-valued

function

R(r,q) = R'(r,q)> O all r,q (1.6)

n . :
and Q: R xMx MxL-> R is a bounded nonnegative scalar-valued

function
Q(x,rl,rz,q)zlo. all x,rl,rz,q . (1.7)
The optimal expected cost-to-go from state (xk,rk) at time k is

Vv, (x ,r ) = min J (x ,z ) - (1.8)
k k' Tk (a, q, keiw-1} k kT

Thus the optimal controls are found by minimizing the expected value of

a cost functional which may include:

. operating costs that penalize control energy expenditure

and system performance differently in each form.

. Jump costs that are charged if and when the form changes.
These might represent start-up or shut-down costs of
equipment, or undesirable transient phenomena; load shed-

ding costs in electric power systems are examples.

. terminal costs dependent upon the final state (including

form) of the system.
' -
The control costs ukR(rk'qk)uk (and usually the x-cost

are chosen to be quadratic because of the

Q[xk+1'rk’ rk+1qu])
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wide applicability and good robustness properties of linear quadratic

control problem formulations (see, for example, [3]). The

ama

qk-dependence of these costs models the penalties incurred in applying

form controls. The Q cost depends, in general, on the current and

prior form (rk+1 and rk) so that jump costs can be included. The

control sequences {uk}, {qk} are constrained to be feedback controls

of the form

b
i

= . <g< , : - s . .
uk fk[{ys k <s<k} {us,qS k _<s<k l},{rs k <s<k }] (1.9)
B gk[{ys O-<--si b A s'3s == 1h1 s Oss— H . (1.10)

That is, the x-control and form control at time k are determined

from past outputs, past (known} controls, and perfectly observed .

form observations.

Control problems for continuous-time stochastic hybrid systems
with x-indpendent r have been extensively studied in the literature.
The stochastic hybrid models used are usually special cases of those
analyzed by Gihman and Skorchod [26]. Under the assumption of perfect

observations, continuous-time optimal control problems for a large

class of system dynamics, form transition models and cost functionals

can be reduced to the search for solutions of nonlinear partial

AD o

differential equations using 'verification' theorems of dynamic

programming.

21
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Krasovskii and Lidskii [ 34] obtained most of the results

that are currently available in the literature for stochastic hybrid
system control (with x-indepeandent form processes and perfect state
observations). The problem was studied later by Wonham [76¢ ]. He
obtained conditions for the existence and unigqueness of solutions in
the JLQ case, and also derived a separation theorem under Gaussian
noise assumptions for JLQ control problems with Markovian forms and
noisy x (but perfect r) observations. Sworder [ 63 ] obtains similar
results using a stochastic maximum principle.

Discrete-time versions of the JLQ x~control problems for
stochastic hybrid systems have not been thoroughly investigated in
the literature. A special case1 of the x-independent JLQ discrete-
time problem is considered in Birdwell [12 ] and [13 ]-[ 14].

A great deal of work has recently been done concerning the
modelling and analysis of jump processes like those describing the
form subsystems here. References of particular note include [ 16-18,20,
25,42,62,71. an excellent discussion of martingale methods for optimal
control problems is contained in [21 ].

This thesis focuses on systems where the form observations are

not noisy. This has not been done because the noisy observation case is
unimportant. The reason for this problem restriction is that, even when

the fcrm is perfectly observed, the solution of control problems of this

lOnly the actuator gain is form dependent.
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kind for the x- and u-dependent form transition probability cases
is very difficult, previously unsolved, important, and useful

in terms of the insight which it provides us regarding the trade-
offs between reliability and system performance goals in fault-~

tolerant controller designs.

1.5 Problems Addressed and Results Obtained

Using dynamic programming, several classes of the discrete-
time jump linear quadratic (JLQ) control problem formulation of the
last section have been soclved. In this section these problems

and results are surveyed.

PART II: JLQ Problems with x-independent forms

In part II of this theses the 'easiest' class of JLQ problems
is examined. These involve systems with x-independent, Markovian
form processes.

The noiseless case is addressed in chapter 3. The control

laws that are obtained are linear in x, with a different law for each

-

form. The expected costs-to-go are quadratic in x (for each form).
All of the control gains and costs are obtained by solving off-line
a set of M precomputable Riccati-like difference equations (one for

each form).
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The continuous-time version of this prcblem was first solved by

Krasovskii and Lidskii [34], and later by Wonham [ 76 ] and Sworder

L R i e e

[67]. A special case of the discrete~time result presented in
chapter 3 appears in Birdwell [12].

For infinite time-horizon problems, steady-state results similar
to those obtained in the standard 1QG problem are accessible. An
interesting (but, in retrospect, obvious) fact is that the controlled,
closed-loop dynamics in every form need not be stabilizing so long
as the probability of entering and remaining in these stable forms
is not "too large." A similar but less inclusive sufficient con-
dition for the continuous-time version of the problem was developed
by Wonham [ 76].

These controllers exhibit the desired adaptability property in

that different laws are used in each form. That is, the system
reorganizes itself when a failure occurs so as to best use available
direct and functional redundancy. The controllers derive robustness

and implementability from the linear quadratic nature of the problemn.

Passive hedging is used to minimize the expected costs. Tha+ i ,

potential failures and other form changes are taken into account (via
the cost functional) in the choice of the optimal control. But no

active hedging (controlled modification of failure probabilities) is

possible because of the independent, uncontrollable nature of the

faili res.
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In chapter 4 several extensions of the x-independent JLQ
problem are considered. These include the addition of jump costs,
linear resets of x, and additive white input and x-observation noises.
The presence of additive (usually Gaussian) white observation
and input noise does not complicate these problems. Since the form
is perfectly observed (with delay), a separation theorem like that of
the s*andard LQG problem follows. 1In each form, a Kalman filter
estimates x, and this estimate is then used by the control law for

that form.

PART III: Scalar JLQ Problems with x-dependent forms

In part III we consider JLQ control problems that involve state-

dependent structural changes. These problems possess

. perfect observations of the state (xk,rk) at time k

. gquadratic costs in scalar N and - for each form,

. no driving or observation noises,

. X dynamics that would be linear, if not for

randomly jumping parameters,

. Jjump probabilities that depend upon x in a
piecewise~constant way (with finitely many

pieces) or are approximated as such.

For finite time-horizon problems in the x-dependent case we

have obtained a recursive algorithm that determines the optimal
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expected costs~-to-go and control laws off-line, in advance of system

operation.

The optimal control laws are piecewise-linear in x (with

l1 O . . ,
X ,x terms) and the optimal expected costs-to-go are piecewise-~

quadratic in x (with x2,xl,xo terms). The gains and costs are
obtained from a set of precomputable Riccati-like equations (not the
same as in the x-independent failure case). The number of "pieces"
grows only additively (going backwards in time from a finite terminal
time). The additive increase depends upon the number of different
forms that the system can change to (from its current one), and the
number of pieces in the relevant piecewise-constant-in-x transition
probakilities. Thus there is a tradeoff between the accuracy of the
modelling of failure probabiiity ;&gg;-dependence versus the comp-
utational burden of control law determination (and the complexity

of the controller.

The optimal controller attempts to minimize the cost incurred
both by the usual LQ regulator action, and by driving the system
state to regions where the likelihood of undesirable form shifts is
reduced. The different "pieces" of the optimal expected cost-to-go
and control law correspond to using the control alter form transition

probabilities at various future times. That is, to actively hedge.

In general, for infinite time horizon problems the number of

pieces becomes infinite. Fortunately, for a large class of problems

26

P O . I T




TN T T
RO
e

this is not an obstacle to implementation because most of the control

law and cost pieces converge. That is, although the true optimal

control law involves a (countably) infinite number of pieces, each
valid over a different range of the x variable, most of these pieces
are "almost the same."

Thus there is a tradeoff between closeness to optimality and
controller complexity. Nearly optimal, steady-state controllers
can be obtained to within any specified deviation from optimal, but
with a corresponding level of complexity (number of separate-interval

control laws).

PART IV: Extensions to the Scalar x-dependent JLQ Problem

In this part of the thesis we extend the results of chapters
5-7 to more general JLQ problems. In chapter 8 we consider a
modification of the solution algorithm of Part III that lets us solve

approximately problems involving:

x operating costs and terminal costs that are piecewise-quadratic in x
. 2 1 o
(with x°, x~ and x~ terms)
. cost pieces that are concave-up as well as concave-down.

This jump linear piecewise quadratic (JLPQ) control problem is solved using

a recursive algorithm that determines the optimal control law and expected
costs-to-go off-line. As in the JLQ case, the optimal JLPQ control laws

are piecewise-linear in x in each form. The optimal exvected costs-to-

kl

go are piecewise-quadratic. Unlike the JLQ case, the number of pieces of
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the ootimal JLPQ controller may grow at a faster—than—iinear rate as éhe
number of’;tages from the finite terminal time increases. The piecewise
structure of the optimal controller is caused by both the piecewise-con-
stant nature of the form transition probabilities (as in chapters 5~7) and
by the piecewise-quadratic nature of the x-operating and terminal costs.
In chapter 9 we extend the solution methodologv of chapters 5-8 to
address a larger class of scalar jump linear control problems, possessing
additive input noise and a more general class of x-dependent form transi-
tion probabilities, x-operating costs and x-terminal costs. Specifically
we consider scalar jump linear control problems with quadratic control
penalties and
. input noise densities that are twice continuouslv differentiable
except at a finite number of points,
. Xx=-operating costs Q(x,r), x-terminal costs QT(x,r) and form tran-
sition probabilities p(i,j=x) consist of a finite number of con-
vex or concave (in x) pieces.

We call this the jump linear piecewise convex (JLPC) control problem.

Our study of this class of problems is motivated by a desire to make the
solution approach of chapters 5-8 applicable to more realistic control
problems. The major extension of chapter 9 is the inclusion of additive
input noise in the x-process dynamics. Additive input noise profoundly
changes the nature of the optimal controller. The piecewise-quadratic
structure of the optimal cost and piecewise-linear structure of the op-
timal control laws is lost due to the "blurring" effect of the noise. 1In
chapter 9 we show how JLPC control problems with additive input noise can
be reformulated (at each time stage) as different but equivalent JLPC pro-

blems that do not possess input noise. These reformulated problems can be
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solved using the amproach of chapters 5-8. The optimal controller for
noisy JLPC problems can be obtained following the stepms of an algorithm
(presented in flowchart form) which generates, off-line, the optimal con-
trol laws and expectad costs at each time k and from each form j. Since
the optimal control laws are not piecewise-linear in xk, we don't have the
nice inductive controller structure of the JLQ and JLPQ problems. We
therefore propose a suboptimal approximation of the JLPC controller that
is easier to determine and implement than the optimal controller. The
suboptimal control laws are viecewise-linear in X, at all times k (and
from each form j).

In chapter 10 we examine further extensions of the solution methodol-
ogy of Part III. We first consider jump linear control problems where the

X process is not scalar. This class of problems is far more complicated

than the scalar case. However we can obtain approximate (subootimal) con-

[

trollers for these problems using an algorithm based upon the suboptimal
controller approximation of the JLPC problem (of chapter 9).

We next consider jump linear control problems involving u~-dependent -
form transition probabilities. This class of problems is of practical im=-
portance since it captures the issue of actuator-dependent failures and it
allows us to examine conflicts between system performance goals and relia-
bility requirements. The control problems (for scalar x and u) can
be solved using a modified version of the solution algorithm of Part

III. At each time stage the optimal expected cost is piecewise-quad-

ratic in x.
In chaoter 10 we also consider JLO problems where the form orocess
can be controlled on the basis of observed xk and rk values. This allows

ug to study controllers that use strategies such as preventive maintenance,
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switching to backup systems in anticipation of failures and the like.

Both direct form control (deterministically switching between forms) and

indirect form control (altering form transition probabilities) are consi-

dered. For scalar-x versions of these problems with x-independent form
transition probabilities (if no form controls are applied), after one time
stage (backwards from a finite terminal time) the ootimal control problem
resembles the x-dependent JLPQ problems of chapter 8. The optimal expected
costs-to~go are piecewise-quadratic in x and are indexed by the choice of

form control qk as well as the current form r, , at each time k. The opti-

k
mal controller must determine the best form control option on-line, given
observations of (xk,rk). These choices are based upon parameters that are

computed (off-line) by Riccati-like difference equations, in a modification

of the algorithms of chapte: ; 7-9.

PART V: Conclusions and Suggestions for Future Research

In chapter 11 we summarize the results of this thesis and we
identify a number of specific and more general directions for

future research.

In conclusion, this thesis considers the control of dynamic
systems subject to abrupt structural changes at random times. It
is motivated by the need for design techniques that yield fault-
tolerant systems. This thesis concentrates on the tradeoffs and
conflicts between system reliability and performance goals.

Specifically, we consider the attainment of fault-tolerance through

control strategies rather than by direct redundancy. This is, of
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course, only part of the overall fault-tolerant design problem.
Howevér the problem formulations here capture many important issues.
We believe that the problems that are addressed and the results
obtained in this thesis provide an important step in the development

of a general theory of fault-tolerant control.
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2. BACKGROUND AND RELATED LITERATURE

The design of fault tolerant, failure-resistant dynamically-
reliable control systems is a problem that falls within the scope
of poth automatic control theory and reliability theory. The purpose
of this chapter is to provide background for this investigation
from both of these fields, and to survey results relating to the
design of fault-tolerant control systems.

In section 2.1 we consider the relationship between the fault-
tolerant control problem and reliability theory. 1In section 2.2 we
will describe approaches to the design of fault-tolerant control
systems that are distinctly different from the methods we are con-
sidering. More closely related work on the control of jumping para-

meter systems is discussed in section 2.3.

2.1 Relations to Reliability Theory

Reliability engineering is primarily concerned with the design
and analysis of systemsthat can perform their missions with high
probability despite component failures.

Reliability developed as an engineering discipline in response
to the military requirements of World War II. The first formal
reliability study reportedly (see [23 ]) sought to explain why

German VI and V2 missles performed so poorly despite their construction

from highly reliable components.
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Following the war, complex system design problems in the
electronic, nuclear, aircraft and space industries gave impetus
to the field. Most of this early work involved the modelling of
failure phenomena and the collection of component failure data.

Early theoretical considerations of reliability in the context
of automata theory (Von Neumann [ 73]) and reliable circuit synthesis
{(Moore and Shannon [43]) concerned achieving overall reliability
through the "proper" use of unreliable components.

The first book on reliability (by Bazovsky) did not appear until
1961 [ 8 1. It was followed by a number of texts in the early 1960's,
such as [ 6], [19], [28]), [46], [52], [54], [72] and [81].
Three more recent texts are [29], [43] and [23]. The works of
Gnedenko, et.al [27 ] and Barlow and Proschan [ 7 ] provide more
mathematically rigorous treatments of reliability theory.

Current activity in reliability theory consists, in large part,

in the development of mathematical theories and associated computerized

algorithms for the analysis of reliability characteristics for systems
composed of highly reliable components. In most contemporary engineering
applications, many (or all) of a system's component parts must be
extremely reliable if strict system reliability standards are to

be met. One motivation for the development of a dynamic control ap-
proach to reliability engineering is the existence of problems (for

example, electric power systems) in which the system's dynamics and its
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reliability are intrinsically intertwined. Also the use of controls
to achieve reliability may, in some applications, facilitate the use
of fewer and less reliable (that is, less expensive) components in the
design of reliable systems.

There are two basic approaches that are currently used for the
reliability analysis of complex systems (or proposed designs). One
approach might be called the 'static' consideration of system
reliability. This kind of analysis seeks to determine the probability
that a given system will not fail (or will achieve various degraded
modes of operation) after some fixed time interval, based on a priori

information about the components, their connections, etc. Some

examples of this static approach, which involves fault-trees, cut sets,

graph theory and the like are in [39],[44].
- A second approach to system reliability analysis focuses on the
dynamic behavior of system failure probabilities. It involves the use

of queueing theory models of complex systems. Queueing systems might

ORI
[y
fetatety

be thought of as combinations of sequences of elementary operations

L

such as single component failures, repairs or replacements, maintenance,
fault searches and detections, successful component operétion prior to
failure, etc. These elementary operations overlap ihwtime; in general.
They are usually considered to be independent of each other; depending

only on the operational status of the overall system.




The outlook of this thesis is in the spirit of this second ap-
proach to reliability analysis. However, we are particularly concerned
with the dynamic performance of systems and the evolution of
(continuous-state space) physical quantities as well as the failure
status of the components that manipulate these quantities. We want
to formulate control problems that achieve good system performance
and high reliability. It is important to realize that the goals of
reliability and performance may be conflicting. For example, the use
of a large control to quickly drive the system into a safe region of
the state space, so as to reduce the probability of a failure, may
entail a large control cost. On the other hand the use of control to
maximize performance may result in a loss of system reliability.
Reliability considerations often limit the performance that can be
obtained from a system; electric power systems are an example of this.
The motivation for our work is a desire to obtain a systematic,
objective means for designing systems that take into account the need
for both high reliability and performance and also account for possible
intrinsic conflicts between these goals. Consequently such systems
should use available system redundancy in a quantifiably efficient

manner.

2.2 OQther Approaches to Fault-Tolerant Control

A number of approaches to the design of fault-tolerant control

systems that are distinctly different from the methods used here have

been considered previously. We will survey them here. In the next
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section we will then consider previous work that is more closely
related to ours, and we will indicate how previous efforts differ
from the work of this thesis.

A mathematical framework for building reliable control systems
through the use of redundant, less reliable controllers is presented
in the work of Siljak [61 ]. This approach is a direct extension,
in spirit, of the work of van Neumann [73 ] for automata, Moore
and Shannon [43] in synthesizing reliable cirxrcuits, and Barlow and
Proschan [ 7 ] in constructing reliable system from unreliable com-

ments. In [61 ], control reliability is defined to be the probability

that a given control structure will insure stability of the controlled
system under a specified class of failures which occur with known
probabilities. Experimental observations indicate high reliability

of decentralized control schemes for large systems with respect to
structural perturbations of interconnections and nonlinearities of
subsystem couplings [S591,[160),[22] and low reliability of these
same decentralized strategies when the system is subject to structural
perturbations in feedback interconnections and controller failures.
The main reason is that, in reliability-theoretic terms, decentralized
controllers are generally series connections of controllers; hence

any one controller failure can cause total system failure. The
natural solution suggested by reliability theory is to introduce a

kind of parallel controller action, through multiple control systems

36
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i that have "functional" redundancy (i.e., overlap of capabilities).

This is explored in [61]. This kind of overlapping decentralized
control system decomposition has been used for the modelling and control
of a string of high-speed vehicles[ 4 ] and in freeway traffic flow

iz regulation [ 321.

Another approach to the analysis of reliable systems appears in
the work of Beard [ 9 ]. He examines 'self-reorganizing' linear
systems which restructure themselves to compensate for actuator and
sensor failures, using the functional redundancy of their components.
Beard's approach is to identify any change (from a set of known pos-
sibilities) and then to attempt to alter the system's feedback control
law so as to achieve closed-loop stability. He obtains bounds on the
number of actuators and sensors needed {(that is, the level of component
T redundancy) using controllability and observability criteria.

A third method for achieving fault-tolerant designs makes no
explicit reference to reliability theory. This approach is to try to
obtain a kind of "passive" fault-tolerance through the design of non-
adapting, robust controllers that attempt to provide satisfactory control

in all forms. The fundamental work on the robustness of feedback

systems is that of Bode [ 15]. These results were extended by Horowitz

« ¥
. B

2 [30), [ 311, Kriendler [35 ] and others, and by Kwakernank and Sivan

(I 38), p.427) in the discrete-time case. Geometric approaches to the

e analysis of robustness properties of feedback controllers have been
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J’ used by Wong [ 77], [78], Zames [ 791, [80] and Safonov and Athans

[ss], [s6], [571. In particular, Safonov [56 ] has obtained

N conditions characterizing the robustness of controllers when parameter
variations result from a change of operating pointsin a nonlinear
system. The recent thesis of Lehtomaki [41] provides a common frame-
work for these and new robustness tests.

An alternative approach to the design of fault-tolerant controllers
is the use of actively adapting controllers that respond to changes in
the operating environment. There are a large number of diverse problem
approaches and formulations that go by the name 'adaptive control', some

;; of which are relevant to fault-tolerant control. We will not review

G these here since general excellent surveys exist (see, for example

[31, 111, and [401).

2.3 Control of Jumping Parameter Systems

In this thesis we consider control problem formulations that
explicitly include the possibility of system failures and structural
changes. We propose extension of the well known linear quadratic (LQ)
control problem to include systems having randomly jumping parameters,
and costs that reflect these changes in system structure. As discussed
in Section 1.4, in this way we hope to capture some of the reliability
and performance tradeoffs in the fault tolerant control problem. We

call this the jump linear quadratic (JLQ) control problem.




Control problems involving systems having jumping parameters are

not new. For example, some applications are surveyed in [67]. These
continuous-plus-discrete-state models have been called stochastic

hybrid models by Willsky, et.al [75] in the analysis of electric

power systems. Control problems for continuous-time stochastic hybrid
systems having state and control-independent discrete~state parts
(i.e., x-independent form processes in the terminology of section 1.3)
have been extensively studied in the literature.

The stochastic hybrid models used are usually special cases of
those analyzed by Gihman and Skorohod [26 ]. Under the assumption of
perfect observations, continuous-time optimal control problems for a
large class of system dynamics, form transition models and cost func-
tionals can be reduced to the search for solutions of nonlinear partial
differential equations using 'verification' theorems of dynamic pro-
gramming. Krasovskii and Lidskii [34 ] obtained most of these results
that are currently available in the literature for stochastic hybrid
system control (with x-independent form processes and perfect state
observations). The problem was studied later by Wonham [76 ]. He
obtained conditions for the éxistence and uniqueness of solutions in
the JLQ case, and also derived a separation theorem under Gaussian noise
assumptions for JLQ control problems with Markovian forms and noisy x

(but perfect r) observations. Sworder [63) obtains similar results

using a stochastic maximum principle and has published a number of
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extensions with his co-workers, including [45], [{64], [65], [66],

=

> [68], [69]. Stochastic minimum principle formulations for
continuous time problems involving jump process have also been considered

by Rishel ([ 48 1,{ 49 1,[ 50 1,[ 51 1), Kushner [ 36 ], and others.

AEEIR TR A R

Robinson and Sworder [53], [70 ] have derived the appropriate
ﬁ nonlinear partial differential equation for continuous-time jump para-

E meter systems having state and control-dependent rates. A similar result

¥

appears in the work of Kushner 36 ] and an approximation method for the

LA

o

- solution of such problems has been developed by Kushner and DiMasi [ 37 ]J.

‘ This is important work but technical issues, such as the lack of existence
of closed form solutions, make it difficult to expose how the optimal
controller effects the tradeoff between performance and reliability.

The major focus of this thesis (i.e., part III) is on systems
subject to structural form changes that can be implicitly controlled,
through the dependence of form transition probabilities on the continuous
part of the state. This dependence allows for the modelling of
conflicts between performance and reliability goals. We choose to

consider discrete-time versions of the jump linear quadratic (JLQ)

control problem, rather than extend the continuous-time x-dependent
results of Sworder [53], [70 ] because the discrete-time formulation is -

amenable to detailed analysis. In discrete time we can get insight into 2

how the optimal controller balances reliability and performance goals.

Qualitative fault-tolerance concepts such as active hedging can be quanti-

fied in the discrete-time setting. !

40 |
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( The control of jumping parameter systems in discrete time have

ok _ 4

not been as thoroughly investigated as in continuous time. The only

3 results available in the literature are for x-independent JLQ problems

N UNORTRY IO N

where the actuator is form-dependent. These are considered in the
L~ thesis of Birdwell {12 ] and in [131, [14].
As a preliminary step in our investigation we also consider

1 discrete-time JLQ problems with x-independent forms. The derivation

of the basic result is straightforward and analogous to the continuous

i
1
3
[l
]
-l
E
1
4

time problem for finite time horizons. We obtain some interesting

- -‘ .‘Al, “ l‘

results regarding infinite time horizon problems, including necessary
and sufficient conditions for the existence of steady-state optimal con-

N trollers. These results are stronger than the corresponding continuous-

-

time sufficient conditions obtained by Wonham [ 76 1, and they provide ~or

- 3.
AFLLN

significant insight into the different types of behavior that can be

e
.

.

exhibited by JLQ systems.

2.4 Summary

In this thesis we consider the design of fault-tolerant control
systems through the jump linear quadratic control problem formulation
$ that was introduced in Chapter 1. These problems involve the control
of continuous-plus-discrete state, stochastic hybrid systems.

Continuous time control problems for such systems have been

extensively studied in the x-independent form case (with perfect form




observations). The continuous-time x-dependent case leads to
nonlinear partial differential equations that are analytically
intractible, although approximation techniques have been proposed.
The results available for the continuous-time case don't expose how
the tradeoff between reliability and performance is effected by the
optimal controller.

We consider discrete time problems in order to obtain some
understanding of the control tradeoffs involved between system
performance and reliability goals, when structural changes and failures
depend upon the continuous part of the state. The main focus of this
thesis is on problems involving x-dependent form transitions since
this dependence allows for the modelling of conflicts between perfor-
mance and reliability. To the best of our knowledge, discrete-time
problems with this x-dependence hdve not been studied previously in

detail.

42

PRI I P EP T W

A el dsde B




Y T T T TR TR W ST W WY UUCUw

T

1+

RS
Al

o v
N .-u N
s J L
L] e

. Y. T
RO
2 4 B dadad

P ¢

PAP SO .

PO Sy S

Al

"

B a8

Tead.

®




&« w7 -

VTR SL W N .

FTVITEIRLT YU
. S - 7.

w

A S

PART II

——u

J1Q PROBLEMS WITH X-INDEPENDENT FORMS




3. NOISELESS MARKOVIAN-FORM JUMP LINEAR QUADRATIC

OPTIMAL CONTROL PROBLEMS

3.1 Introduction

In this chapter we consider a special class of the jump linear
quadratic (JIQ) control problem formulation in chapter 1. We examine
the optimal control of jump linear systems having

. X-independent Markovian form processes
. perfect state observations and no noises
. purely quadratic operating and terminal costs

. no 'resets' of x when the form changes.

This class of problems is formulated and solved in sections 3.2-3.3.

The optimal control laws are linear in % (a different law for each form)
and the optimal expected costs-to-go are quadratic in xk. These control
laws and costs can be computed off-line, in advance of system operation,
by solving M coupled Riccati-like matrix difference equations.

The continuous-time version of this problem was first formulated
and solved by Krasovskii and Lidskii [ 34 ], and later by Wonham [70] and
Sworder [63]. A special case of the discrete-time result presented here
appears in Birdwell [ 12-14 ].

The solution of the discrete~time JLQ problem that is developed here
is a necessary logical first step in the study of more general control
problems for systems with abruptly changing structure which will be

used in later chapters. The controller derivation presented here is
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conceptually straightforward. However study of the optimal controller
provides valuable insights into the qualitative behavior and stability
properties of jump linear systems. Several of these properties are
highlighted by example problems in section 3.4.

In section 3.5 the steady-state control problem is considered.
Necessary and sufficient conditions are derived for the existence of
a set of steady-state constant expected cost-to-go functions. It is
shown that the corresponding set of time-invariant steady-state contxol
laws stabilizes the controlled system, in that E{xi xk} + 0 as

(k-k0)+ o and that the steady-state control laws minimize the limiting

expected cost-to-go as (N—k°)+ ©, with finite optimal expected cost.

A more restrictive sufficient condition for the continuous-time
version was developed by Wonham [76]. To the best of our knowledge, T

the discrete time steady-state results are new.

» 3.2 problem Formulation

i: Consider the discrete-time jump linear system
Xepl = Ak(rk)xk + Bk(rk)uk (3.1) a
- Pr{rk+l=j|rk=i} = P,y i03) (3.2) .
- where I
x(ko) =X, ,r(ko) =r, .

45




In the above we have

. time index k takes integer values

k e{ko,k0+1,...,N-1,N}
. xk € Rn X-process
. uk € RP x-control .

The form process {rk: k=k°,...,N} is a finite-state Markov chain

taking values in

r, €M =11,2,...,m} Mo

That is,

Pr{rk+l=j}ro,rl,...,rk} = Pr{rk+l=3|rk}, v3i€ M and k

(3.3)

where the form transition probabilities pk(i,j) in (3.2) must

satisfy
M
S p, (i,9)=1 VieM andk -
=1 =

Here A(-) and B(-) are appropriately -dimensioned matrices where,

for ieM
A(i) = open-loop x dynamics in form i
B(i; = x-process input gain in form i.
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The cost criterion to be minimized is

N-1
Jxo(xo’ro) =E kzk [“k'Rk(rk)“k * x)'<+1Qk+1(rk+1)"k+1]
0

(3.4)

* Xy Kplrgdxy

The RK(j)’ (j) (for each k=0,...,N-1) and KT(j) are positive-

%+l

semidefinite symmetric matrices for each j€M where

M
R (3) + By (3) [121 pk+l(j,i)Qk+l(i)] B, (3)> 0 . (3.5)

In particular, (3.5) is satisfied if

R (3)> 0
for all j € M and timesk .

>
Q, (412 0
The xN'KT(rN)xN term is.a terminal cost in addition to

X' O (Fy) %y

3.3 Problem Solution

The optimal control law can be derived using dynamic programming

[101. Let Vk(xk'rk) be the expected cost-to-go from state

(xk’rk) at time k:




g SN NI e
St ST

M/ M A 1‘-\—1‘5_ RS A At

= 'R
VN[xN,rN] Xy T(rN)xN

Vieler ] = min B YR B0+ D1 Fred e | £,
Vier1 By ! x
(3.6)

Thus V. [:S‘,r ] is the minimal value of the cost criterion (3.4),

|

computed over time interval lk' k+1,... ,N‘ . Hence

Vk (xk ,rk ) = min Jk (xk ,rk ) .

o 0 o uko'uko*‘l""'uN'l o "o "o

The iterative relationship (3.6) can be recursively solved for

v (xk,rk) and u (rk,r ), going backwards in time from finite time N.

Proposition 3.1l: Consider the discrete-time noiseless Markovian-form

jump linear quadratic optimal control problem (3.1)-(3.5). The

optimal control law is given by

L -Lk_l(j)xk_l for Ty =3 eM

k=k°+l, eee N

and the optimal expected cost-to-go by

Vi [®er 7y =31 = % K (xy T,=31€eHM




where the optimal gains Lk_l(j) are given by

_ | N
$ G v ]S b ol | |
|Re-1"3 k=17 .Zl P (3, T By ()

L1 K ” 5

M Q. (i)
B! ) 3 p i) ¥ A (j)l
k=11 & Pk + k-1
L . -
K (3.7)

for each j € M,and the sequence of sets of positive semi-definite
symmetric matrices {Kk_l(j): j € M} satisfies the set of M coupled

matrix difference equations

o W[ 3,

§ (3.8)
K1 = A D] 2 p (Gad) |+ . . ‘
i=1 Kk(l) -Bk_l(J)Lk_l(J)
jeM
with terminal conditions

Kg(3) = K, (3)

The value of the optimal expected criterion (3.4) that is achieved

with these control laws is given by
"
*o %, (eg)% -

The proof of this Proposition is contained in Appendix B.1l.
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Note that the {Kk(j): j € M} and optimal gains {Lk(j)z j e M} ”
can be recursively computed off-line, using the M coupled difference
equations (3.7)-(3.8). The M coupled Riccati-like matrix difference
equations cannot be written as a single nM-dimensional Riccati-equation,

. 1
because of the inverse terms. Proposition 3.1 essentially appears

PRIPRE RIS A LY ULV

in Birdwell's thesis [12 ], where it is called the switching gain

solution.

3.4 Examples and Discussions

In this section some qualitative aspects of the JIQ controller
given in Proposition 3.1 are illustrated via example systems. For

convenience, the examples considered here are time-invariant and scalar

in x with M=2 forms. That is,

x a.x, + bluk if r =1

k+1 1k

¥ee1 = 2%t Po% i r=2

NN

in E Nil 2 o) + 2R( Y|+ %k _(r)
min lk:o xk+lQ r, u, R(r, X9 KT N

with form transition probabilities as shown in Figure 3.1.

.'444‘4'5!

ahad

2 )
. g
I..' 1
E B 1Time-invariant parameters with A, R, Q independent of the form r. q
N
o
v
-
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Figqure 3.1: Example System Form Structure

Prom Proposition 3.1 we see that the optimal expected costs-to-go

and control laws are

J—.1 - 2 3 —
Ve Ber Ty = K Ke) =12
u (x .r, =3) = -L _Q)x, i=1,2
where
Q Q
. 1 2
Lg1 @31 =3y MRy | Ty | F B
K, (1) K ()
. Ql Q2 (2.9)
R, + b, 3P + + P +
»o3 (Y ga 121k ()
K C )- _Kk
and
% 2, ]
Ke-q () = a9 7P + + Pya| * aj-bjLK_l(j) (3.10)
K Llﬁ((2)d

for 3j=1,2 and K=N,N-1,...,0.
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The closed-loop optimal system thus obeys

I L taaa

a. R,

Xepy = 4 SJ % ]xk (3.11)
l

R-!-b2 P, + P +
3) 3L j2 }

for k=0,1,...,N-1 and rk=j.

The %Kk(j)’ je g} may or may not converge as k decreases fram

N, and xk may or may not be driven to zero, as shown in the following

examples.

Example 3.1l: Here is an example in which the :Kk(j% converge quickly

and x is driven to zero. Let

xk+l = xk + uk if rk=1
xk+l = 2xk + 2uk if rk=2 - .
with ]
pij = 1/2 »
: Kp(3) = 0 \i
I:: A i'j=1’2
Q) = 1

R(j) = 1

The optimal costs, control gains and closed-loop dynamics (computed
using (3.9)-(3.11)) are given in Tables 3.1 and 3.2, for four

# iterations: d
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()=, (1) (2)=L,_(2)
Nt =Ty N 1800y

k=N-1 .5 .8

k=N-2 .6226415 . 868421

k=N-3 .6357717 .87472

k=N-4 .8370559 .875327

i

(. A M R i
PR s e A AR
et S R
oot et . . et
. . oot . R A

Table 3.1: Optimal Gains and Costs of Example 3.1.

A 20 e o
I
c e e
Sttt
S

S

al-blLk(l) az-szk(Z)

k=N-1 .5 .4

k=N-2 .3773585 .263158

k=N-3 .3642283 . 25056 -

e k=N-4 .3629441 .249346

h Table 3.2: Closed-Loop Dynamics of Example 3.1.
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The expected cost parameters Kk(j) and optimal gains Lk(j) are
converging as (N-k) increases. The same is true for the closed-loop

systems, which are stable
,~b, <1
|ay-b,% (3]

for all times k=N-1, N-2,...,0 and j € M. Conditions for convergence
will be addressed in the next section.

In the 'worst case' of r, =2 for all times k=0,1,...,

k

. N-1
lim [x | < 1im (.5)" ~|x.] =0.
N0 xN Nooo 0

Thus X is driven to zero by the optimal controller.

This example demonstrates the passive hedging behavior of the

optimal controller. That is, possible future form changes and their
associated costs are taken into account. To see this, consider the

usual LQ regulator gains and cost parameters (as if Pll=p22=l and

p12=P21=0), which are listed in Table 3.3
1&(1) = Lk(l) Kk(Z) = Lk(2)
(with p11=1) (with P22=1)
k=N-1 .5 .8
k=N-2 .6 .8780487
k=N-3 .6153846 .8825214
k=N-4 .617647 .8827678

Table 3.3: Standard LQ Solution for Example 3.1.
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¢ Comparing Tables 3.1 and 3.3, note that for k<N-2 the gains

ﬂff of the Proposition 3.1 JLQ controller are modified (relative to

10 controller) to reflect future form changes and costs. The JLQ

controller has higher r=1 gains to compensate for the possibility

where

and

Example 3.2:

systems in different forms are not all stable, although the expected

ol value of x is driven to zero.

el T T Y
Xea1 = Ty

11 21

G

KT(j) =0

Q(3) =1

R(1) =1
R(2) = 1000.

that the system might shift to the more expensive form r=2, similarly,

the r=2 gains are lower in the JLQ controller.

Here is an example where the optimal closed-loop

Let
if rk=1
if rk=2
12 " Py = -1

.1

° 1

.9

j=l,2

Thus there is a high penalty on control in form 2.
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This system is nine times more likely to be in r=l1 than in r=2

2,4,

e,

at any time. We might expect that the optimal control strategy may

tolerate instability while in the expensive-to-control form r=2, since

the system is likely to return soon to the form r=1 where control costs

. ¥ AR, B

. are much less. Computation of (3.8)-(3.11) for four iterations

demonstrates this, as shown in Tables 3.4 and 3.5.

I&(l) Kk(Z) LK(l) LK(Z)

k= 0 0

P

g
o
"

:
. ]
. ;i
B
4

k=N-1 .5 3.996004 .5 1.998x10" >

k=N-2 . 6490736 7.384818 . 6490736 3. 67203x10-3
3

e k=N-3 .6990352 9.2692147 .6990352 4.60253x10

- k=N-4 .7187893 10.198343 .7187893 5. 0603611:10_3

P
4.

4

Table 3.4: Optimal Gains and Costs of Example 3.2.

B
2.5

vl
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al-blLK(l) %szLK(Z)
i k=N-1 .5 1.998002
3 k=N-2 . 3590264 1.996328
k=N-3 .3009648 1.9953975
k=N-4 .2812107 1.9949396
f Table 3.5: Closed-loop Optimal Dynamics of
--: Example 3.2.

Ny These quantities are converging as (N-k)=» %, Note that the closed-loop
af system is unstable while in r=2.
Direct calculation of the expected value of X given xo and ro,

shows that E|xk[ decreases as k increases. This is shown in Table 3.6,

if ro=l if ro=2

Xq 1.0 1.0 -
: x, .28121 1.99494
= E{x,} .13228 .93844
e E{x;} 06915 .49057 h
_ E{x4} . 04493 .31877
jx Table 3.6: E{xk} for Example 3.2,
I?
-‘;.
. ".
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In four time steps, E{x} is reduced by over 95% in form 1 and 68% in

form 2. Note that if the system starts in the expensive-to-control
form r=2, x is allowed to increase for one time step (until control

while in r=1 is likely to reduce it}).

Example 3.3: This example illustrates how 'small' errors in the modelling
of transition probabilities near zero or one can cause large differences

in the JLQ optwiaal controller. Let
el TR T if o=l
X+l T X it =2

P,=1-P

Aﬂ
P11< & 2. ’ P12 small

where N=4

KT(1)=O

8
KT(Z) 10
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The system starts in form ro=l. If a failure occurs at time k (that L/

. {
= ]
. is, rk=2) then a cost K

| Y R |

=9) = w2
VK(xk.rk—Z) X Kk(2)

g is charged. But since no control is possible in the failed form (i.e,

P . A

b(2)=0),
2
Ve e 532 = 1 K@) . ¢

We will consider three values of the failure probability p12 here: §

Case A: No failures possible P12=0

N

h)
:: Case B: p12-’001 :
TS

Case C: piz=.002

a2

in order to examine the effects of small errors in the modelling of P__.

;~ 12
N .
o If there is no chance of failure (Case A) then the optimal IQ ]
" ]
control slowly drives x towards zero (less than 4% reduction in 4 time —
. intervals). The optimal costs, control gains and closed loop dynamics 1

é (for r=1) in this case are given by Table 3.7.

Kk(l) LK(l) al-blLK(l) 4
a |
- k=N-1 .99099 . 00990099 .99099 :
;' k=N-2 1,951267 .0195126 . 9804874 :
: k=N-3 2.8666641 . 028666 .971334 1
k=N-4 3.7227191 .0372271 . 9627729 F

L

;j Table 3.7: Example 3.3 JLQ controller in form r=1, under
- Case A (P, =0).

bkt aslodhct ot adlE o
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If there is a small nonzero failure probability (Case B p12=.001,

Case C p,,=.002) then the optimal JLQ controller drives x, to zero

12
almost completely in the first time step, as shown in Table 3.8. Thus

a small difference in the value of P12 here makes a large difference in
the optimal controller only if the difference changes the form transition :

structure of the system ((Case A vs. Case B) but no: (Case B vs. Case C)).

K, (1) Ly (1) a,-b, Ly (1)
k=N-1 99,990001 .9999 9.999x10 >
k=N-2 99. 990002 .9999 9.99801x10 > i
k=N-3 99.990002 .9999 9.99801x10 ">
k =N-4 99.990002 .9999 9.99801x10 > ‘
I .
(a) Case B: p__=,001 , b(2)=0 |
12 <
Kk(l) Lk(l) al—blLk(l) '
T
k=N-1 99.995 . 99995 4.999975x10 >
k=N-2 99.995 . 99995 4.99951x10 > ;
)
k=N-3 99,995 .99995 4.99951x10 > {
k=N-4 99.995 . 99995 4.99951x10 > .
) - - /
(b) Case C: P ,=.002 , b(2)=0 !

Table 3.8: Example 3.3 JLQ controller in form r=1 with
b(2)=0 and (a) p12=.001 (b) p12=.002.

Bl ool od B
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Now consider what happens when the wrong controller is used in the

above cases, where x

0=1 and ro=l.

If the true value is 912=° and the plz=.001 controller is used then

u = 999002 .
x, = 9.98x10" ¢

and the achieved cost-to-go is around 99.80l1, or about twenty-six iq
times greater than the cost with the correct (p12=0) controller. R

If the time P, .=.001 but the plz=0 controller is mistakenly used,

12 g
then

2

x, = .9627729 ]

E{xz} = ,9352016

E{x3} = .,9188873

E{x 4} = .9087535

and the expected cost-to-go is

346290,.67
which is around 3400 times greater than what the correct éontroller .
obtains. )|
In general, sensitivity to small parameters can be expected q

if the closed-loop costs are very different in the different

forms and if a small change in the form transition probabilities alters

61
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the form chain structure (probabilities very near zero and one). Changes

in the controllability structure are reasonable in models of failure-

prone systems. Different cost structures for failed and unfailed forms are
S also appropriate; for example, a system may use expensive back-up equipment

when failures occur. The example system above is an extreme case which

A
Loea et

*

illustrates scme of the issues that arise in deriving general

theoretical results concerning JLQ systems. 1

3.5 The Steady-State Problem

In this section we consider the JLQ Markovian form control problem

(3.1)-(3.5) when all parameters are time-invariant and the time horizon

(Nhko) becomes infinite.

DA . PRRRRRIUNY . T R

We wish to minimize

PR

N-1

lim E Z [u)"R(rk)uk+:ﬁ"+lQ(rk+1):ﬁg+l]+ x&KT(rN)ﬁq ﬁo) -

(N—kor*w k=k, 7, s

s s

subject to (3.12) |
Xepy = A Ix + Blr)w (3.13) :
Pr}rk+l=j}rk=i§ = pli,j) (3.14) :
x(kg)=xy r (k°)=r0 . N

From Proposition 3.1 we have that the optiral control laws are

Uey Fpem1 Tpe-1") = Ly (0%
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with optimal expected costs-to—go

Vi (e 7 =30 = % K Oxg

where for each j € M, and k=N-1,N-2,...

'k

R (3) = Ky (3)

Xe4p = D (D=

where

63

The optimal closed-loop dynamics in each form j € M are thus

0
-
M Q(4) =
RIS R B(3) |
L, (3) = i=1 .
X Kt )
M Qi) (3.15)
@) I opGay) A
Keer )
and
M (1) A(3)
K () = a' ) ] p(j.i)( . >< | > (3.16) <
i=1 K, @/ |\ )
with

Y. NN

]
i
i

]
Y
]
i
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A ) ,
Dk(J) I Bj + M i Bj i:ipji . Aj.
1 + =
B Z p.. _ Kppp (1)

(3.17)

Before stating the main result of this section, we recall the

following terminology pertaining to finite-state Markov chains: -

. A state is transient if a return to it is not guaranteed.

. A state i 1is recurrent if an eventual return to i is

guaranteed. If the state set is finite, the mean time -

|
until return is finite.
state i 1is accessible from state j if it is possible to
begin in j and arrive in i in some finite number of
steps. |
. states i and j are said to communicate if each is accessible
from the other.
. A communicating class is closed if there are no possible -
transitions from inside the class to any state outside of it.
. A closed communicating class containing only one member, j,
is an absorbing state. That is, ij=l' i
1
I
i
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. A Markov chain state set can be divided into disjoint sets

T, Cl,...,Cs, where all of the states inlg are transient,

and each C is a closed communicating class (of recurrent

b
states)}

Define the cover Qj of a form j € M to be the set of all forms

accessible from j in one time step. That is,

¢; = {ieM: p(j,1)$0} .
The main result of this section is the following:

Proposition 3.2

Consider the time-invariant Markovian JLQ problem (3.12)-(3.14).

Suppose that there exist feedback control laws
w = -F.x for each ieM

such that the following conditions hold:

(1) For each absorbing form i (ie: p,,;=1) the (deterministic)

cost-to~-go from (x =x,r =i) at time k remains finite
*x

k
(for any finite x) as (N-k)+®. This is true if and only if

- -]
't . _ t ©
tzo (A,-B,F.) "(Q+FIR,F.) (A -B.F )" < (3.18)

(each element finite).

See [36], p.53.
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(2) Por each closed communicating class Cj (having two

or more members) the expected cost-to-go from
(xk=x, rk-j € Cj) at time k remains finite (for any
finite x and each 1 € C j) as (N-K)+> «@, This will be

true if and only if for each such class Cj there

existsa set of finite positive-~definite nxn matrices
I} satisfying (3.19):

{z,,...,2
1 |cj

‘ for all iecj .

(3) Por each transient form i € T C M, the expected cost-

to~-go until the form process leaves T (that is, until

a closed communicating class is entered) is finite.

This is true if and only if there exist finite positive-

definite nxn matrices {Gl,.. . ,GT} satisfying (3.20):
]

Qi+FiR
t +

154

[- -]
t-1 ' t
G, = (1-p,,) tgl Py, (A;~BF) (A,~B,F.)

AL 7L (3.20)
for all i € T.

Pl

66

AR AR Rad S e P e e oy I ——— - ——r o
) AR Sasl i a g e S N A i e icte A0 AR ALl aMc SN, A At R E AR AU T U R O T . ——— —

PAVRRE 2

...

PORFIRIPIA  § TORVRVPOTULILIS J Cr NN

1

H

|
e

8BRS

o
s

<
-3

PP A S U AT SONE SN LSNP SN WY NPT NP WPNLAPRE TPRE ISP NE SPUL PR T WA TS R W ST W WP R ST S SRS AS W I UNE Sy IR Y ]!__..:‘i-l‘;&;L‘-"n&‘-—‘.‘,‘th_“Ah_‘-J



Dk ety

RO N il

rronon o LER T

---------------------

The existence of feedback laws F
necessary and sufficient for the
matrix difference equations (3.1

constant steady-state set

{x(3)> 0: j e M}

as (N—ko)* o, given by the M coupled equations

i satisfying these conditions is
solution of the set of coupled

5)-(3.16) to converge to a unique

(3.21)

0o

........

Kj) = ®, 1 .
-l P..| + B, |B; p..\K@d) JjB,| B. p.. ./ A,
| L= PAk)/] I Lia 9t I3 IR
(3.22)
for j € M. The steady-state optimal control laws
5 = hy% je
have time-invariant gains {Lj: j € M} given by
Rj -1 M Q
L, = B! + A, (3.23
3 M Qi j z pj:i. . 3 )
' i=1 K(i)
B z Py + B,
I Li=1 3\ g1y)/d 3
and minimize (3.12)-(3.14) with
= x! < .
Vko(xo,ro) xox(ro)xo © (3.24)
for x'x < o,
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When the steady-state optimal control laws (3.23)-(3.24) exist, they

stabilize the system in the sense that

E{xk'xk} +0

as- (k-k°)+ ®, and K(j)> O for each j e M if

{4) for at least one form i in each closed communicating

subset of M, the null spaces

/

ne%nnw) = {0} . (3.25)

The conditions (2)-(3) take into account

’; . the probability of being in forms that have unstable
. a closed loop dynamics

. the relative expansion and contraction effects of
unstable and stable form dynamics, and how the
eigenvectors of accessible forms are "aligned."
That is, it is not necessary or sufficient for all
forms to be stable, since the interaction of dif-
ferent expected form dynamics determines the
behavior of E{x)" x }.

This will be illustrated in the examples of this section. The conditions

in Proposition 3.2 differ from those of the usual discrete-time linear \

quadratic regulator p:r:obll.em1 in that: i
. necessary and sufficient conditions (1)-(3) replace the )

sufficient condition that the (single form) system is
stabilizable 4

lSee, for example (38], p. 497.




Unfortunately conditions (1)-(4) are not easily verified.
no evident algebraic test for (3.18)-(3.21) like the controllability
and observability tests in the LQ problem.
in Proposition 3.2 will be demonstrated in examples later in this
section.

The proof of Proposition 3.2 has the same basic outline as in

condition (4) replaces the assumption that the (single
form) pair (A, Ql/z) is detectable.

the LQ problem:

(1)

(ii)

First show that conditions (1)-(3) guarantee that
with zero terminal costs {KN(j)=O; j € M}, the
sequence of positive semidefinite symmetric matrices
{Kko(j)} (for each j € M) in (3.16) is increasing

and bounded above as (N-ko) increases and hence the
Kko(j) converge element by element to bounded matrices
Then (3.15)-(3.16) yield the steady-state values
(3.22)-(3.23) and the costs

xa K(j)xO r, = jeMm
are finite for finite xg-

Condition (4) is then shown to guarantee that E{xk'xk}
goes to zero as (k-ko) becomes large, and that K(j)>0

for each j € M.

€9

There is

The use of the conditions




(iii) Next it is shown that these results hold for

arbitrary finite symmetric terminal cost matrices
{k ()20, j € M}

(iv) Finally it is easily shown (by contradiction) that
the {K(j), j € M} are the unique positive definite
solutions of (3.18).
Once (i)-(ii) are proved then (iii)=-(iv) are easily established}'

Step (ii) is proved in Appendix B.2. Note that:

Corollary 3.3: The null-space requirement in condition (4) of pro-

position 3.2 is satisfied if, for at least one form i in each closed

communicating subset of M,

>0 . ' O
Q, >0

The difficult part of proving Proposition 3.2 is establishing that
conditions (1)-(3) have the desired effect. Equations (3.18)-(3.20)
follow by a direct application of dynamic programming. The cost-to-go
from (xk, x

k=i) if i is an absorbing form is

-
' - 't ] _ t
’ﬁg< t§=0 (By~ByFy) (QuF;RFL) (A 7B,y )"k

(where control law gain -Fi is used), hence (3.18). For a closed com-

manicating class Cj, the expected costs-to-go from (xk,r =i) for each

k

1as in [11), pp. 76-79.




ie Cj are

X 2% (ie cj)

as given in (3.19), if these Z, are all positive-definite and finite.

i
Similar arguments yields (3.20). Details of this are given in

Appendix B.3.

In the remainder of this section conditions (1)-(3) are
exanined and illustrated via examplas.

Consider the following simple scalar example problem that shows

how the conditions of Proposition 3.2 can be tested.

§§gggle 3.4

10

T )/’\

® o4
3

. )
O D

X4 " a(r)xk re{1,2,3,4,5,6,7)

Q(x)> 0

Here

6 is an absorbing form

{3,4} 1is a closed communicating class

T = {1,2,5,7} are transient forms




b Por the absorbing form r=6, (3,18) yields

8 ® . t
% ! atatoraele = .
t=0

Hence

2 t
o(e) L (a (s)) <o |
£=0

Thus we have condition:

(1) a’(e)< 1

For the closed communicating class {3,4}, (3.19) gives coupled

- equations

N
[}

a(3) [Q3+z4] a(3)

N
]

a{4) IQ4+Z3] a(4)

Plugging in for Z, in the first equation yields

g 4

‘5 a2 (3) 2

N : Zy = 3 10(3) + a“(4)0(4)]

w 1-a“(3)1a“ (4)

S a®(4) 2

o z, = 3 3 [0(4) + a“(3)Q(3)1]
l1-a (3)a (4)

Thus for 23, Z 4 positive we have condition

(1) a’(3a‘(a)<1 -

P T T T P S P T T S, . e S S S

Ty - DRy
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For the transient forms {1,2,5,7}, (3.20) yields

G1 = a(l)[Q(l) + 62 ] a(l)
G, = aQHQQ)+pH%}aQ)
® P
t-1 2t 72
G, = (1-P,,) L P a (7)[Q(7) + —'——]G
7 77 L 1 1-p,, | 2
_ o T o t-1 2t
Gg = (1-p,) t=z.1 P (5)0(5)

Now for 0O < Gs < ® we have the condition

2
(iii) Pgg a”(5)< 1
with the resulting

2
(5)a”(5) (1-p__)
o = o P55’

2
l-pssa (5)

We find from the Gl and G2 equations above that

al) g+ a2 (1)9(2)]
G, = 2 2
1-a’ (Wa’(2)p,,

a(2)[o(2)+ a2 (1)p,,0(1)]

G =
2 2 2
l-a (1)a (2)921

P T T L e




so for 0 < Gl' G2

< » we have conditions
2 2

. <

(iv) a '(1)a (2)p,, 1,

Finally we find

2 P81 2 [ 2 t
G7 = a (7)(1'977) (M) + E:S;; tzl a (7)977

so for 0 < G7 < © we have condition

(v) a“(7)p77 <1

and

2
a (7) (1-p,.) P Q
. = 77 o7y + 12 21

7 2 2 2
1-a (7)p,, (1-P,,) (1-a (1)a (2)921)

a2 (2) 19 (2)+a%(1)P..0(1)]

Thus (i)=-(v) are the necessary and sufficient conditions of
Proposition 3.2. For this example we see that

. The absorbing form r=6 must have stable system

dynamics (i)

. one of the forms in the closed communicating class
{3,4} can be unstable as long as the other form's
dynamics make up for the instability (ii)

. transient forms r=5,7 can have unstable dynamics as
long as the probability of staying in them for any
length of time is low enough (iii), (v)




...........

. some instability of the dynamics of form r=l,2
is okay so long as the probability of repeating

a
2+ 1+2

cycle is low enough (iv).
From (3.15)-(3.16) it is clear that each {Kk(j)} sequence is increasing
as (N-K) increases.
In the proof of the LQ problem, the existence of an upper bound
~;z can be gquaranteed by assuming the stabilizability of the system. This
does not suffice here (except for scalar x), as shown in the following

example.

Example 3.5: Stabilizability not sufficient for finite cost

)
N

Let M=2 where

<l/2 10 > 0
A = B =
1 0 1/2 1 <o> N

10 1/2

=1, p..=p, .=0 (a "flip-flop" system).
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Both forms have stable systems (eigenvalues 1/2, 1/2) and hence are

stabilizable. However

100,25 5
= if r =1
k2 5 .25 "k k
.25 5
= X, if r =2
Ter2 5 100.25/ ¥ k

oo ick ol e,

which is clearly unstable. Thusxk and the expected cost (3.12)

become infinite as (N—ko) goes to infinity.

In fact, controllability in each form is not sufficient, as

demonstrated below.

Example 3.6; Controllability not sufficient for finite cost _4

Let M=2 where

o

0o 2 0 )

A, = B, = {

1 \o o 1 \1 !

i

: 0 o 1 3
i : Az = Bz = .

Thus in each form (r=1,2) the system is controllable, and the closed-

loop systems have dynamics

. %1 T Py e
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where

0 2

D =

1
fl fz
1

f3 f4 !

D2= H
2 0

where fl' fz, f3, f4 are determined by the feedback laws chosen.

Now suppose that we have a "flip-flop" system as in the previous

example:
Pii=Ppn =0
P =Pr2=1 .
q
Then !
x.. = (o.0)F $F ¢ =1 |
2k 2"1’ %o 0 _i
x. = (0.0)% x if r =2 :
2k 172" %o 0 1
where i
£, 2f 4EE, 1
D2D1 = :
0 4 .
g
1
|
4 0 !
D,D, =
£ £ 428, £1, J
\
{
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Both DlD2 and D2D1 have 4 as an eigenvalue. Thus xk grows without

. 1
bound for xO#O as k increases. Controllability in each form allows
us to place the eigenvalues of each form's closed loop dynamics matrix

(Di) as we choose, but we cannot place the eigenvectors. In this

. example, there is no choice of feedback laws that can align the eigen-
structures of each of the closed loop systems so that the overall dynamics
are stable. The following example demonstrates that (for n>2) sta-
bilizability of even one form is not necessary for the costs to be bounded

above.

Example 3.7
Let M=2 with

1 -1 0

a. = B =
1 0o 1/2 1 \o
12 1 0

By T 8, 7
0 1 0

Both forms are unstable, uncontrollable systems so neither is sta-

bilizable. We again take

l'I‘he closed-loop systems are stable if and only if the moduli of each
eigenvalue is less than one. See, for example, [38] p. 454.
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P1; =P = 0
Pip =Py =1
Then
x.. = (AA )k X if r =1
2k 21 0 0
x.. = (AJA )k if r_ =2
2k 1720 %o 0
where
1/2 0
AA, = AA =
271 172 0 1/2
Thus x goes to zero geometrically as k increases and hence the

2k

cost (for any finite Qj' Rj.Z 0 j=1,2) is finite. We next show

that this example does satisfy condition (2) of Proposition 3.2.

From (3.19),
L}
2.'1 = Al[Q1 + ZzlAl

L}
zz = A2 [Q2 + z1]A2

Suppose, for convenience, that Q1 = Q2 = I. Then we obtain from

the first equation above that

1
le(l) le(l) l+le(2) -1-211(2)+ > 212(2)
= 1 1
7, (1) 2,,(1) “1-2, 20+ 3 2,,(2) [ 142, )= 5 2y (@)
1 11
2 2@+ g+ 7%,
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and plugging this into the second equation:

(NP
&

]
(NI

+
& |-

This yields four equations in four unknowns. Solving, we find

le(z) Z12(2) 2/3 2/3
221(2) 222(2) 2/3 3
and thus
G le(l) le (1) 5/3 -4/3
= ’
221(1) 222(1) -4/3 5/3
which are both positive definite. Thus Zl and 22 satisfy (2) of

a
Proposition 3.2.

We can obtain sufficient conditions

that replace the necessary and sufficient conditions (1)-(3) in
Proposition 3.2, and are somewhat easier to compute, in terms of

the singular values of certain matrices. For any matrix 3,

/2

[max eigenvalue A'A]l

| al]

max singular value of A (3.26)

ne

o(a).
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Note; In the above, ||A|| is the spectral norm of A, defined as

lal] & max  {]]aul]} (3.27)
| u||=1

over all vectors u of unit length where I[---I[ on the right in
(3.27) designates the ordinary euclidean norm of a vector

1/2

n
2
HNxl] =] I =
i=1 *

Corollary 3.4: Consider the problem of Proposition 3.2. Sufficient

conditions for the existence of the steady-state control law (and

finite expected costs-to—-go), replacing (1)-(3), are:
there exist feedback control laws
Q= -Fixk ieM
such that

(1) for each absorbing form i (pii=l)’

£,,2
tzo |l a8, < (3.28)

(2) for each recurrent, nonabsorbing form i

(- -}
t-1 t) 2
(1-p,,) tzl p;; a-BF)7]]" <c<1 (3.29)
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:_' (3) for each transient form i € T that is accessible from a

form j € Ci in its cover (j#i) ;

-]
t-1 t, 2
(1-p, ;) tgl P II(Ai—BiFi) [1"<e<1 (3.30)

and for each transient form i € T that is not accessible from

any form j € ei in its cover (except itself):

T

- -

. t-1 2

- (1-p, ) ) Pi II(Ai-BiF.)tl] <o, (3.31)

‘. t=1 1 O A
}

N The proof of this Corollary is given in Appendix B.3. A similar result

- for continuous-time systems is obtained by Wonhaml [76 1, except that

s stabilizability and observability of each form is required, and a

' condition (3.29)=(3.30) is required for all nonabsorbing forms.

%

Condition (3) is motivated as follows. The cost incurred while in

PRI

a particular transient form is finite with probability one since,

eventually, the form process leaves the transient class T and enters a
closed communicating class. If a particular transient form i € T

can be repeatedly re-entered, however, the expected cost incurred while

padinall. it o it cdhnd

in i may be infinite; (3.30) excludes such cases. Note that the suf-

ot ficient conditions of Corollary 3.4 are violated in example 3.7 (in both

a4 o e

forms). This demonstrates that they are restrictive, in that they ignore

1'I‘heorem 6.1, p.195 o [761].
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the relative "directions" of x growth in the different forms
(i.e. the eigenvector structure). We consider next a sufficient
condition that is easier to verify than (1)-(3) of Corollary 3,4,

but more restrictive.

Corollary 3.5; Sufficient conditions (1)-(3) #n Proposition 3,2

can be replaced by the following:

For each form i € M, there exist feedback control laws

such that

”Ai'BiFi” <c<1l (3.32)

Proof: If this condition holds, then with these Pi we have (with

X finite)

33 E x Qr)x +u R(xk)ukg

k=0

2 , ® %
< ||=.|] (max |]o, + F,R.F,H)max Y |la,-B,F ||
- 0 ( 3 3 333 i k=0 iii

-]
< (constant) } o

k=0 a

since ¢ < 1.

Note that if (3.32) holds then conditions (1)-(3) do. Note also
that we are guaranteed that lek[|+ 0 with probability one, if (3.32)
holds only for recurrent forms. However this is not enough to have

finite expected cost, as demonstrated in the following examples.
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Example 3.8:

transient
form

i=1,2

absorbing
form
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Thus

min ‘IAl°81P1|l "' a O) = a3 > 1
r Hlo a

la_- -
min ||A-B,F ||= 0

Fa

and for r,=l and |!x°]‘, finite

L]
°
L

E ;k-o x,"Q(rk)xk + tﬁ"n(rk)uﬁ‘: ]

k 2k 2
- pa” |ix, ||
k=0 )
- ]
k
« llxgl1" 1 tap) ]
k=0 .. |
If
azp <1 W
then the expected cost is _%
2 y
|12y ;
7. <°” i
I-ap }

but if azp >1 then the expected cost-to-go is infinite. This

demongtrates that (3.32) holding only for nontransient forms is not

1

’ sufficient.
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Example 3.9: Let

if rk=1,3

0 a
(250)
where
P12
P A
1 C.‘ o >P22
2
P23

If the system is in form 1 for three successive times
= = = then ' = . i
(rk Lesl = Tra2 1), Xeyn (0 0) for any X, The same is
true for three successive times in the absorbing form r=3.

In form r=2, the expected cost incurred until the system leaves

(at time T) given that the state at time k is (xk,rk=2) is
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‘r-l

o0
] - 1) - t‘l ] t t
Eltzk X QX (T X [(1 Py, tzlpzz (a.) QZAZ]Xk .

For this cost to be finite we must have

- -]
t-1 ,...t t
(1-p,,) E"zz (A) " QA
t=1
' ©
2 2 t
= 9,a" (1-p,,) Eo (p,a") <

which is true (for Q2 finite) if and only if

2
< 1.
a 922 1

Thus we would expect that the optimal expected costs-to-go in Proposition

3.2 will be finite if and only if

2
< .
a P22 1

Let us verify that the necessary and sufficient conditions of Proposition
3.2 say this.

From (3.18), for absorbing form r=3

-]
t t
) A (Q )R] < @

t=0
0 O
= for t > 2.
0 0

so this condition is met.

t
A,
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Por transient forms {1,2} we must have 0 < G/ G,
where
® p
t-1 A 12 €
G=(_l—‘)ZP (A)) Jo, + ——G_ |3
1 2 SR R ¢ 1[1 =P, 2|71
T -1 t
- L]
G, = (1=Fy)) I By () op,
t=1
Now
t
(Al)t t _ a 0
2 Ay =
0 at
thus

- 2 2.t
62 = Qz(l P22)a Zo (Pzza )

hence we have condition

2
(L) a 922 <1

= 2 2 .
and G, = Q,a (1 Pzz)/(l Pzza ). Finally since

. 0 0
(Al) = for t>2,
0 0
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we have

G, = (1 )A' +p12 G_|a
= @=P) |2 |9 1-p, 2|1

|

2
Pyp2 (1-Py,) o \a
221"

= (1-p )[A' Q. +
11 1 1 2
(l-pn) (1-922a )

which is positive-definite since Ql' Q2 > 0. Thus the necessary
L and sufficient conditions of Proposition 3.2 here reduce to (i),
as we deduced earlier. Note that the sufficient condition (3.32)

of Corollary 3.5 is never met for r=1, r=3

1/2

2 2
I, =113 )| = xw< c2s .

2 2

T
4

and to meet (3.32) for r=2 requires
a0l = Ma®| <1=>a® <1

However the sufficient conditions for Corollary 3.4 are met because
forms {1,2} are 'non-re-enterable' transient forms satisfying

(3,31) (if agpzz $ 1 for r=2),
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3.6  Swmmary

Let us consider the JILQ controller here in terms of the fault-
tolerance criteria of section 1.2. We note that the controller
(3.7)-(3.8) is clearly adaptable (in the terminology of section 1.2),
since a different control law is used in each form. That is, when
a failure or other structural change occurs it is instantaneously
detected (by assumption) and this information is used to reorganize
the controller.

Passive hedging (the taking into account of possible future

form changes and associated costs) is accomplished via the
M
) P (3,1)1Q, (1)+K ()]

i=1

terms in (3.7)-(3.8). There is no active hedging possible in this

problem formulation because the form transition probabilities

cannot be controlled. With regards to the implementability

attribute of fault-tolerant controllers of section 1.2, the
precomputable nature of (3.7)-(3.8) should facilitate the use of
this controller if M(N—ko) (the number of gains that must be computed
and stored) is not too large. When the steady-state controller of
Proposition 3.2 exists, a set of M optimal steady-state gains that
can be used in place of the M(N—ko) gains; this certainly should sim-

plify implementation.
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While in each form, the optimal JLQ controller of Proposition
3.1 is endowed with robustness properties derived from the linear
quadratic problem. However the JIQ controller may be extremely
sensitive to small errors in the modelling of form transition pro-
babilities, if the probability in question is close to zero or one
and if the controllability of the dynamics changes between forms,
as illustrated in example 3.3.

Proposition 3.2 provides necessary and sufficient conditions
for existence of the optimal steady-state JLQ controller. These
conditions are not easily tested for nonscalar-x problems, however
since they require the simultaneous solution of coupled matrix
equations containing infinite sums. In Corollaries 3.4 and 3.5
sufficient c¢cuditions that are based upon singular values are presented
that are somewhat more testable for some problems. However the
derivation of easily calculable conditions for the JLQ steady state
problem (like the controllability and observability conditions of the

10 problem) remains an open question.
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4. EXTENSIONS OF THE X-INDEPENDENT JLOQ PROBLEM

In this chapter we develop two extensions of the JLQ problem
formulation. Our purpose is to indicate how the ideas and results
of Chapter 3 can be applied to more general problems. We will con-
sider here only problems with form processes that are not explicitly
x-dependent. The more difficult cases of x and u dependent forms are
the subject of Parts III and IV of the thesis.

In section 4.1 we consider JLQ problems with additive input noise
to and noisy observations of the x subsystem (but perfect observations
of the form). As in the LQ problem, a separation result holds. The
only complication is that the parameters of the estimator of xk (from
noisy observations) depend upon rk, and thus cannot be compute:
off-line.

In section 4.2 we widen the range of physical situations that can
be captured by the JLQ control problem by including in the problem

formulation jump costs and x-resets when the form changes.

4.1 The JIQ Problem with additive input and x-observation noise

In this section we extend the JLQ problem of Chapter 3 to include
additive white input noise, and we assume that a linear function of %

is observed at each time k in the presence of additive white noise.

Under the crucial assumption that the form process is perfectly observed
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at each time k, the optimal control law is the same as in the noiseless
case but it acts upon an estimate of the x process. This estimate
is obtained by a Kalman filter, where the update parameters are deter-
mined at each time by the observed form value.

We are considering the discrete-time jump linear system with

additive driving noise:

Xiel = A(rk)xk + B(,rk)uk + = (rk)vk (4.1)
Pr{rk+l=j|rkf1} =Py i,jem
where
x(ko) = x0
r(ko) = ro
>
I
P, .=l vi,jeM
j=1

M ={1,2,...,M}

n n
Xy € R ukGZR
k=k0, k0+1,...,N .

At each time we observe Ty perfectly and a linear function of

x, contaminated by white observation noise:

k

Y = C(rk)xk + D(rk)uk + A(rk)wk . (4.2)

AP
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In (4.1)-(4.3), v € R® and wy € RP.  The input noise sequence {vk}

and observation noise sequence {wk} are white, Gaussian with

= A4
E{vk} 0 k
- }Jo 2#k
Elv, vi} = { Ve, k
9=
E{wk}=0 vk

E{w

0 L#k
2 { Vk,%

and are independent of each other, of the form sequence {rk}

and the initial condition xo. Here

E{xo} =X
E{[xo-xollxo-xol'} = Wo

and x. is independent of the (deterministic) r._.

0 0
We seek to minimize the cost criterion
N-1
kzk WR(EI + X 000 )
Jk (xo,ro) = E 0 Xy .
0 *Sn ) Ky TR

+ xb"KT(rN)xN + H (r )x + G (r )

24
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1
o Note that we have xk and xﬁ terms in (4.3). These are included

here for later comparison with the x-dependent form problems in

- Part III of this thesis. In (4.1)-(4.3) we take, for each i € M,
R(i)>0
:. Qi) s'(i)/2
O 20
gd s{i)/2 P(1)
- (4.4)

KT(l) HT(l)/2

>0
HT(l)/Z GT(l)
Y >0 *

0—

The term

x' + +
NKT(rN)xN HT(rN)xN GT(rN)

in (4.3) is a terminal cost charged in addition to the time-invariant
cost
' + + .
Xy Q(rN)xN s(rN)xN P(rN)
The control problem is then to find the control law

W = (YO ) ey (R): T (k) ,enn sz (k) (4.5)

that minimizes (4.3). As in the linear quadratic Gaussian (LQG)
problem the optimal solution to this problem satisfies a separation

principle. 1In particular we have the following:
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Proposition 4.1

The stochastic JLQ problem with incomplete and noisy measurements,

as in (4.1)-(4.5) has the following solution. The optimal control

law is given by

U1 B Tm1™3) = B DKy FF ) (4.6)

The control law parameters in (4.6) are

R(3) -t
L () = + B' (1)K, (3)A(3) (4.7)
B' (K, ()B()
. R(3) -1
SCHREE S YOO ..8)
k * B (J)H.k_._l 32 (4.
B (1R, (1)B() :
for k=N-1, N-2,...,k, and j € M where {Lk(j),Fk(j)} are computed _i
recursively, backwards in time from k=N, by the following sets of :

M coupled matrix difference equations: A ]

_ ¥

R(3) ! M

K =a @R, @f-sm Y BT (3K, DA i

B' (3K ,,(3)B(I) (4.9) -

R(3) - 3

B () = A (D]|-B|  + B (K ,, () [am) :
B' (1)K, (3)B(3) (4.10)
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where

M

Kop 31 = 1 PGLDIK (1) 40 (1)) (4.11)
i=1

" M

B ) = 1 PR (1)+8(1)] (4.12)
i=1

with terminal conditions

KT(j) (4.13)

Ky(3)

HN(j) HT(j) . (4.14)

The optimal (minimum mean square error) estimate xk in (4.6) is

given by the following form-dependent Kalman filter:

x-estimate A _ ~
extrapolation x (=) = A(rk-l)xk-1+3(rk_1)“k-1 (4.15)

error covariance .
Wk(-) a(r, )Y (rk-l)A (rk_l)

extrapolation k-1 k-1

= — (4.16)
et n n y, =C(r, )x (=)
x-estimate xk = xk(_) +T (z) k k xk (4.17)
update kk -d(r, )

k' -1

error covariance
update Wk(rk)= [I—Fk(rk)C(rk)]Wk(-) (4.18)
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-1
Cl(r )Y (-)c'(x))
. . k" 'k k
filter gain _ Yy
matrisx I‘k(rk) = Wk( )C (rk) +
A(rk)A'(rk) (4.19)
with initial conditions
x (=) =X (4.20)
0
‘Pk (=) = ‘i’o . (4.21)
0]
The optimal expected cost-to-go is
{
Vi (XgrTo) = %gK (Fgdxg + B (£o)x, |
0 0 0 ‘
{
+ Gk (ro) + tr[Kk (ro)Wol ‘
0 0 .
N-1 A - ]
+k§k £ P O B i) Ky (i) B 1y () ]
- {
=
(4.22) '1
where
) : ;e :
G, (3) = () + p(i.i)er {\E (1) + (1) K
k Bt kel Qi) :
1 R(3) -t
T4 B DB, B' ()AL (3) 'l
~ L (4.23) {
B' (K 1 (B : !
!f
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with

M
Gppp () = igl P(3,4) [G, (1) + P(1)]

and terminal condition

GN(]) = GT(J) jeMm .
At each time k=N,N-l,...,kO
Kk(J) Hk(J)/Z
>0

H (3)/2 G (3)

This is proved in Appendix B.4.

(4.24)

(4.25)

(4.26)

Note that the control law is unchanged if therxe is no obser-

vation or driving noise (ie., Z(j)=0, A(j)=0,

is, the certainty equivalence principle applies here.

4.2 Jump Costs and Resets

vieM).

In this section we extend the range of problems that can be cap-

tured by the JIQ problem formulation. Specifically we consider

problems where

e jump costs are incurred when the form changes

from rk—l to rk at time k
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]l * the value of the x process may be reset

to an affine function of its current value

when the form changes.

o Jump costs might represent start-up or shut-down costs of equipment
when the system form changes. They might also model undesirable
transient phenomena such as load shedding costs in electrical power
systems, or the cost of equipment destroyed by the form change.

‘The resetting of x allows us to model failures that result from
abrupt changes to the dynamic state of the system. For example, ;
phenomena such as failure~caused biases in communication equipment or
rapid voltage jumps due to changing interconnections in electronic ‘
devices can be modelled by resets of x. In addition we can use resets 5
to represent nonlinear systems as a collection of linear systems, each |
associated with a different operating point. The x process might re-
present the deviation of the state from the current nominal value. If _‘
we assume that changes in the operating point are caused by external
events (and are not x-dependent) then the results of this section can
be applied. The x-dependent case is treated in Part III.

Consider the following class of jump linear systems with affine

resets:
x;+l = Alr )x + B(ru + Z(r)v, (4.27)
Pr{rk+l=j|rk=i} =Py i,jeM (4.28)
100
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Kerr = AET )Xy T BT )

(4.29)

We will assume in this section that the state process (xk,rk) is

perfectly observed at each time k. The problem is to find the

optimal control laws

uk = ¢k(xop-¢-'xk; rO’-.-'rk)

that minimize

N-1
= ' '
Jko(x 1Ty) = E kzk QR Iw + x0T )R
0

F S )Ry YR T )

+ x'K_(r + H
AL T e L S ML L

+
Cp(Ty-1"%n’

(4.30)

(4.31)

Jump costs enter into this cost function through the dependence

of 9, s, P, KT, HT and GT on both the "old" and "new"” values of the

form. That is, we can assign a different x-cost to each form

trangition as well as to each form, if desired. Here the time-

invariant parameters

R(j)>0
Q(i,3) s'(i,j)/2

>0
S(i,j)/2 P(i,j)

101

' B N
LIPS WS P . V. DU VR "Ly _a . a . & e

(4.32)

(4.33)

o e

‘.','f“.‘T'Y‘Tl




and
K,r(i,j) H,'r(i,j)/z

HT(i.j)/z

>0 (4.34)

GT(i'j)
for all i,j € M.

To find the optimal control law we apply dynamic programming.

We have
N = x'
N Vi B Fa-1 S = e e T ¥y Y Hp T T By
(4.35)
+ GT(rN_ler) _.
3 5
(.11 : j
uN—lR(J)uN-l
- q:’ VN-1 [xN-l' - 1=3]tn + q
N ; - (s ! : 3 .
) 1 ’H\JQ(J'IN)XN X1 ]
-, ﬁ + (4.36) -
- Eﬁ S(3rxg)xg + P(J,rN) Te-1"3 i
* "
L Wy Bygr Tnmy =37 5]
:- and fOI' k=N-2' eeo s 'ko
y
u 'R(3)u R
v, (%, ,x, =) =min +
' _ .
R I E -1 PSS LY . ) (4.37) )
ﬁ + k %
- EW Sz )Xy * PGen ) | BT ‘
+
J
L “Vierl Fpea Tiead) 1

. R
ol A ]
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Using (4.29) (4.31) we can rewrite (4.37) as Vk(xk,rk=j) =

uiR(j)uk
B T - — -
_ [aox]] _ [aom
A(j,1i) + A(j.i) .+
M B(i)w, Q(3.,4) B(3)uy
. g E(j;v X
min p(3,1)E _;(j)vk_ - k_ .
R — 4 2(3,i) — -+ 2(,i) - k
i=1 .

S(j,i)[ij,i){A(j)xk+B(j)uk+5(j)vk}+z(j,i)]
+

P(j,1i)

+
\ Vk+l[A(j,i){A(j)xk+B(j)uk+E(j)vk}+Z(j,i),i]

(4.38)

i

Solving (4.38) recursively for the optimal control sequence

then yields the following:

Proposition 4.2: For the problem (4.27)-(4.34) the optimal control

law is given by

W 1 Tea™) = oL )Xyt F . ) (4.39)

for k=N, N-1,...,k.+1 and the optimal expected cost-to-go is

0

=) = st . + : )
Vi (X o =3) = K )k + H ()X G, (3) (4.40)
for k=N-1, N-2,...,k, for each j € M, where the parameters in (4.39)-

(4.40) are computed recursively, backwards in time, by




...... L e W NN TR TR TR S TR TR TR TR

-1

R(J)
+

3 = A' K j I- j -
K (3) (3K, D ]T-B() B' ()K,,; (3)B(G)

R(3) -1
H (§) = -] * B'<j)fgc 1l am
k Tt RPN s +1
B (J)Kk+l(3)B(J)
R(3) -1
G, () =6 () -28 _ _(eH] + B' () A
K Sg+1 4 k+l J . 37 41
B'(J)Kk+l(j)B(j)
M _ 03,4 |
+ Y pGoeeds (A G, | A3, 1)2(9)
i=1 K pq ()
R(3) -1
Gy =] + B' (5)K__, (3)A(3)
& B' (DR, (3)B(3) et
] e .
Fk(J) =-3 + B (J)H£+l(3)
B'(J)Kk+l(J)B(J)
as in Proposition 4.1, but with
. M _ Rt V|
K@ = 1 pa,0A G0 | . |AG,D
i=1 . .
Q(j,1)
104

B-<j)f<k+l<j> a(3)

(3)

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)
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H "
;' - . . -
J R M IS<+1(1) Hk+l(l) _ .j
% e, ) = ';21 p(3,1) |22 (5,1) . + . 2G| (4,47 -
- B A Q(3,1) 5(3,1) ‘
- -
- T K i N
z' (3,1) N %(3,1) )
M ;
3 A 0o o Q(3,1)
i Gp (3 = 2 PG
S i=1 :
N o (4.48) X
[Hk+l(1) +8(3,1)12(3,1) 1
+ :
n
(G, (1) + B(5,1)] ]
4
and terminal conditons
. Ky (3,4)
R = [ pa,nx G| T AGD (4.49) "
i=1 Q(3.1)
) K (3.1) H(3,1) R
A3 = 1 e [Jeara.an| * «| 7 aG3,1)| (4.50)
i=1 Q(j,i) S(j'i) .
- - 3
K_(3,1) 1
Z'(jri) + Z(jli) :.
) M Q(3,1) .
G (=1 pli.i) ;
i=1 + )
[H,(3,4) + $(3,0)12(3, 1) i
!
+ (4.51) :
| (G, (3,1) + P(3,1)] d . |

i S
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At each time k=N—-l,...,ko ’

Kk(j) Hi(j)/z
>0 . (4.52)
H.k(J)/Z Gk(J)

Comparing this result with Proposition 4.1 in the noiseless case
(ie, Z(j)=0, A(§)=0, Vj € M) we see that the cost andcontrol laws

1 A A A
are the same™ but the definitions of Keep (300 Hk+l(j) and Gk+l(j)

are different. Note that

e the X(j,i) (linear reset) parameters enter
into all of the cost and control law terms

(as do the Q(j,i)'s)

e the Z(j,i) (constant reset) parameters do not
affect the linear gain of the optimal control
law.

The following example illustrates some of the gqualitative effects

of jump costs on the controlled system's behavior.

Example 4.1:
Consider the following problem:
1 T % T % if n=t
R ! MRS

1For deterministic xk .
o]
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[
v
3
i_-'.:
]‘ p(1,1) = .9 p(1,2) = .1 -
- p(2,1) = .9 p(2,2) = .1
E"’: 01
a
3 C — Ay 1
2
.9

with

N-1
min { S ukR(r ) + xk+l Qe et ))

k—ko )
where
R(1) =1 cheap to control when rk=l
-l
R(2) = 1000 expensive to control when
rk--z .
If we take

Q(1,1) = Q(1,2)=1 Q(2,1) = Q(2,2)=1

(ie, no jump costs) then we have the same problem as example 3.2.

The optimal JLQ controller parameters and the closed-loop dynamics

for this case are listed for four time stages in Tables 4.1 and

4.2, respectively.
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|
K (1) K, (2) L (1) L (2) ;
3
-3 3
K=N-1 .5 3.996004 .5 1.998x10 ‘?
K=N-2 .6490736  7.384818 .6490736  3.67203x10°°
K=N-3 .6990352 9.2692147 .6990352 4.60253x10"°
K=N-4 .7187893 10.198343 .7187893 5.06036x10 >
Table 4.1: Optimal Gains and Costs of Example 4.1
a(1)-b(1)L, (1) a(2)-b(2)L, (2)
K=N-1 .5 1.998002 .3
K=N-2 .3590264 1.996328 |
K=N-3 .3009648 1.9953975 ]
K=N-4 .2812107 1.9949396 - .‘
5
Table 4.2: Closed-Loop Optimal Dynamics of Example 4.1. -
1
R
Now suppose that there is a jump cost charged when the form changes ]
from r=1 to r=2. Take
L
Q(1,2) = 2
P
Q(lll) = Q(zll) = Q(2'2)=1 .
]
3
]
R
1
108 o
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The optimal controller parameter and closed-loop dynamics
for this case are listed in Tables 4.3 and 4.4, respectively.
Note that the additional expected cost-to-go caused by this
=1 and 0.70%

penalty is slight: about 1.25% greater from r

N-4

greater from rN_4=2. Comparing Tables 4.2 and 4.4 we see that
in form 1, the closed loop optimal system drives x to zero a little

more quickly when this jump cost is present.

k K (1) K, (2) L (1) L (2)
N-1 .5238095 3.996004 .5238095 1.998x10 >
N-2 .6634162 7.4701392 .6634162 3.73506x10 >
N-3 .7096495 9.3545273 .7096495 4.67726x10 >
N-4 .7278253 10.270011 .7278253 5.135x10 >

2ot Sitags St it hant i duae o

Table 4.3: Example 4.1 with Q(1,2)=2.
3 a(l)-b(l)Lk(l) a(2)-b(2)Lk(2)
N-1 .4761905 1.998002
N-2 .3365838 1.9962649
N-3 .2903505 1.9953227
N-4 .2721747 1.9949865
Table 4.4: Closed-Loop Optimal Dynamics when Q(1,2)=2.

2l g o o OO S
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Now suppose that the jump cost is high. Take ‘

Q(1,2) = 1000

P

Q(lrl) = Q(zrl) = Q(ZIZ) =1,

Then the optimal strategy in form 1l is to drive x almost completely
2
to zero in one time step (incurring a cost of about u R(l)=l).

The optimal strategy in form 2 remains the same; almost no control

PITI O WV TTOT ST

is used. The optimal cost and control law parameters for this

Sk

high jump cost case are listed in Table 4.5, and the closed-loop

il S

dynamics are in Table 4.6.

k Kk(l) Kk(Z) Lk(l) Lk(Z) :
N-1 .9901864 3.996004 .9901864 1.998::10-3 j
N-2 .9903092 9.1421301 -9903092 4.571961(10-3
N-3 . 9903573 11.190689 . 9903573 5.594534:{10-3
N-4 .9903763 12.005421 .9903763 6.0027lx10-3

Table 4.5: Example 4.1 with Q(1,2)=1000.

|
5
Ml
i
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T
.

:! k a(l)-b(L)L, (1) a(2)-b(2) 1Ly (2)
I:: -3

- N-1 9.8136x10 1.998002

' N-2 9.6908x10 > 1.995428

5 N-3 9.6427x10 > 1.9944055

- " _3

:] N-4 9.6237x10 1.9939973

Table 4.6: Closed-Loop Optimal Dynamics when Q(1,2)=1000.

4.3 Summary

This chapter completes our study of JLQ problems with

the linear quadratic optimal control problem formulation can be
extended to jump linear systems in a straightforward way, provided

that the jumps are x-independent and perfectly observed.

optimal JLQ controller becomes much more complex in these cases and

Es displays features not captured by the problems studied to

this point.
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x-independent forms. As we have shown in this chapter and in chapter 3,

In parts III and IV of the thesis we will consider JLQ problems
that involve form changes that are x-dependent, either explicitly or

through controls. As we shall see, the structure and behavior of the
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5. SCALAR JLQ PROBLEMS WITH X-DEPENDENT FORMS

5.1 Introduction

In this chapter we examine a class of nonlinear stochastic control

problems that capture the active hedging issue of fault-tolerant

optimal control. The problems under consideration are scalar-in-x JILQ
problems with form transition probabilities that depend on x.
Specifically, we consider
. form transition probabilities that are (or

can be approximated as being) piecewise-

constant in x.
For this class of problems we develop a recursive procedure for the
determination of the optimal expected costs-to-go and control laws
"off-line," in advance of system operation. We also establish a number
of qualitative properties of the optimal controller.

The optimal expected costs-to~-go are piecewise-quadratic and the

control laws are piecewise-~linear in Xy in each form. That is, the

real line is partitioned into a number of intervals of x values
( pieces ), and over each such interval Vk(xk'rk=j) is quadraticl in
xk and uk(xk,rk=3) is linear, for each form j € M.

For each j € M at time k the expected cost-to-go Vk(xk'rk=j) and
control law uk(xk,rk=j) have the same number of pieces, mk(j). In
general this number grows as (N-k) increases. A typical expected cost-

to~-go and control law are shown in figure 5.1.

lIn this chapter the term quadratic in x is used for functions of the

form a°+alxk+a2xi; the term linear is used for functions of the form

e 2% %
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(2) Sk(3) 3,(4)

(a)

% uk(Xpefy =)

/

L

j ]
ak:n /ak(z)
1

J J
8k(3) 3y (4)

(b)

FIGURE 5.1: Typical curves of (a) Vk(xk,rk=j) and (b) uk(xk,rk=j)
with mk(j)ss pieces.
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The different pieces of Vk(xk,rk=j) and uk(xk,rk=j) arise from
using the control to actively hedge. Intuitively, at each stage the
optimal controller must take into account what the expected cost of
driving x into different regions will be, where different values of the
form transition probabilities apply. As the control problem is solved
backwards in time from a finite terminal time (using dynamic programming),
the controller must take into account what the effects of active hedging
will be at the intervening times.

The procedure that is developed here for computing the optimal
mk(j), Vk(xk'rk=j) and uk(xk,rk=j) (inductively, backwards in time for
finite time-horizon problems) involves the computation and comparison of
a growing number 'of quadratic functions at each stage and for each
j € M. These quadratic functions are computed via Riccati-like dif-
ference equations. All of these computations can be done off-line, as
in the x-independent JLQ problem.

The basic idea of this solution procedure is simple; essentially
the nonlinearity of the system dynamics (due to the x-dependence of
the form transition probabilities) is converted into computational
complexity in the determination of vk(xk,rk=j). It is the piecewise-
constant structure of the form transition probabilities that allows us
to do this.

At each time stage k, the control problem involving the determination
of \&(xk,rk=j) for a system having the full hybrid structure (as pictured

on the left of figure 5.2) is transformed into the comparison of many
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FIGURE 5.2: Conversion of nonlinearity into computational complexity.
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constrained-in- xk+l JLQ control problem costs with x-independent
form transitions (as pictured on the right in figure 5.2). One
constrained problem arises for each regyion of xk+l values having dif-
ferent
. form transition prébabilities out of j
(pji' ie cj)

. different pieces in the expected costs-to-go
at the succeeding time (i.e., Vk+l(xk+l'rk+1=l))'
for each form in the cover of j (i.e., i € cj).

The number of costs-to-go that must be compared at each stage, and

the number of pieces, mk(j), in Vk(xk,rk=j) grows

. at most linearly with the number of transition
pProbability pieces

. at most geometrically with the number of forms that

are accessible from form j in one time step.

The "piecewise" structure of the optimal expected costs-to-go and
control laws is caused by the piecewise-constant structure of the form
transition probabilities.

The solution procedure developed in this chapter provides an
"approximately optimal" controller for problems where the true x-depen-
dent form transition probabilities have been approximated in a

piecewise-constant way. Clearly this approximation can be made
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arbitrarily close to the true controller by using a fine enough
piecewise-constant approximation. Thus there is a tradeoff between
accuracy of the form-transition probability

approximations (and the resulting optimal

controller)

vs.
compatational complexity in the off-line

determination of the optimal controller and
in the number of controller pieces mk(j)

that must be implemented on-line.

Although the basic idea of this chapter is simple, the derivation
and presentation of the general result involves unavoidably complicated
notation and "bookkeeping" problems. For this reason, this chapter
has been organized as follows:

1. In section 5.2 the general problem is formulated.

2. In section 5.3 one-stage of a simple problem is

solved from first principles .

3. Guided by intuition gained from this example, a
general solution procedure is developed in section
5.4 and certain qualitative properties of the

optimal controller are established.

4. In section 5.5 this sclution procedure is used to

solve the next stage of the example problem.

5. In section 5.6 a number of combinatoric properties

(i.e., concerning the number of pieces of the optimal

18 118




solutions, etc.) and qualitative
properties of the optimal controller are
established. These results are motivated

by the example problem.

From the study of the optimal controllers developed here we can
gain insight into the structures of controllers that use active hedging,
and into the qualitative effects of their control actions.

In chapters 6 and 7 the results of this chapter are used to in-
vestigate a number of additional qualitative properties of the controller;
in particular, steady-state behaviors are examined. In addition, an
algorithm flowchart that efficiently performs the calculations specified
in section 5.3 is presented. In Part IV this algorithm is extended to

include more general jump linear control prcblems.

5.2 General Problem Formulation

In this section we present the general problem formulation that
is addressed in this chapter. We restrict our attention to the time-
invariant case so as to simplify notation somewhat. All of the results

of this chapter can be direétly extended to the time-varying case.

Consider the discrete-time jump linear system

Xpp1=a(rK) X + b(ry) ug (5.1)

d"‘\l’i.-"ET.‘o--‘-'—‘v‘.‘-"!!‘!‘-




Pr{rk+l=:)lrk=1, X=X} = P, 35%) (5.2)

x(ko) = X, r(ko) =x, .

Each transition probability p(i,j:x) of the form process is assumed
to be piecewise-constant in x, having a finite number of pieces Gi
That is, the real line is partitioned into Gij disjoint intervals

with the transition probabilities taking constant values over each

interval:

pli,jix) = kij(S) (5.3)
if

Vv,.(s=1) < x <Vv..(s)
ij ij

where
$=1,2,...,V,.
1]
By ()< V. (1) €< V(. ~D<y, (V) S (5. 4)
ij ij L S & ij ij *

These grid points Vij (s) may be different for each pair

(i,j)e M x M. For all s=l,2,...,-\71.

J
)‘ij (s)> 0 for each i,j € M
M
z Aij(s)=1 for each i €M .

j=1

A typical p(i,ji;x) is illustrated in figure 5.3.
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The form process is not Markovian because of its dependence

on x. However the joint state process {xk,rk: k=k_,...,N} is

0
Markov. It is assumed that the state (xk,rk) is perfectly observed ]

at each time. The problem is to find the optimal control laws

W = ¢k(xo,...,xk; ro,...,rk)

that minimize the cost criterion (5.5>below:

o T

SNl nhit ok ol

AD(i,j:x) :

i
vij=5
3
!
—_— -1
- — 7«
{

\ \ | | -

ity v(2) 0 %3  ¥4) X

FIGURE 5.3: Typical piecewise-constant transition probability.
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2 2
GR(E) + X000 ,,)
0 kek, L7 ST F B (5.3)

2
+
+ xNKT(rN) + HT(rN)xN GT(rN)

where the expectation is over {rk ,...,rN} . Since {(xk,rk): k=k_,...,N}

0 0

is a Markov process we need only consider feedback laws of the form

B = b (Kermy) -

Here

R(i)> O
Q (i) s'i) /2
>0 (5.6) e
s(i)/2 P (i)
. 1 .
KT(l) HT(l)/Z
>0

HT(i)/Z GT(i)

for each i € M. We will assume herel that b(j)#0 for each j € M.

l'rhe result for forms where b(j)=0 (that is, the system just "coasts'
in form j) is presented at the end of Appendix C.2. This result is
used in some of the examplesin chapter 6 and 7.
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The term

.- 2
. xNKT(rN) + xNHT(rN) + GT(rN)
in (5.5) is a terminal cost charged in addition to the time—invar;ant

cost

xiQ(rN) + xNS(rN) + P(rN) .

1 o
The X and X terms (xks(rk), P(rk), xNHT(rN) and GT(rN)) are
included in (5.5) because they naturally arise in the computation of
the expected costs-to-go. Even if the x-costs in (5.5) are simple

quadratics (i.e., S(i) = P(i) = HT(i) = GT(i)=O), some of the

1
quadratic pieces of the optimal expected costs~-to-go will have X and

‘[3 x; terr .

5.3 One Stage of an Example Problem

In this section we solve one time stage of a simple example
problem satisfying (5.1)-(5.6). This is done to illustrate the basic
solution idea alluded to in section 5.1, and to gain insight into the
qualitative properties of this class of problems. A number of obser-

vations and claims inspired by this example are listed at the end of

this section for later consideration.
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a Example 5.1: Consider the following system having M=2 forms: - i}
b .
’E R+l - T % if n=l ﬁ*
r‘C " of
L" = 2 = o
e T Pt % o2 S

1

p(L,2:x) /e lxla ]

3/4  |x|>1 B

]

p(1,1:x) = 1-p(1,2:x) p(2,2)=1 p(2,1)=0 . ;‘

S

We seek to minimize

N-1 '
. 2 2 2
i + + -
min E J (uk xk+l) xNKT(rN)s
- W, ree,U =0

0 N-1

S _JEUINORN

where KT(1)=O, KT(2)=3. The form structure and form transition

-
X.
ﬂ]lh'ﬂ;

probability p(l,2:x) for this example are shown in figure 5.4.
The values r=1 and r=2 might denote, respectively, "normal" and

"failure mode" operation. The KT(Z) parameter represents a penalty

N
USR]

charged for failure of the systemn. The probability of failure

L

A4 as

p(l,2:x) is low for small magnitude x, and larger if |x|>1.

Once the system fails (attains form r=2), it stays there. 1In
this form the usual LQ solution applies. The optimal (deterministic)

i cost-to-go is

2
Vk(xk,rk—2) = kak(Z)

for k=N,N-1,...,0 where

@ e

. ST
e




p(1,2:x)

p(2,2)=1

p(1,1:x)
(a)

% p(1,2:x)= pr{foilure}

-

= (b)

FIGURE 5.4: Example 5.1: (a) form structure, and (b) transition
probability p(l,2:x).
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L. .

KN(Z) = KT(Z) =3

a2<2)a<2){xk+l<z>+g<2>1 4K, (2)+1)

(2) =
R R(2)+b2(2)[Kk+1(2)+Q(2)] 24K, (2)

and the optimal control law in form r=2 is given by

B =) = L (2%
where

a(2)b(2)[Kk+l(2)+Q(2)] 2(Kk+l(2)+l)

(2) = - .
L 24K (2)

R(2)+b°(2) [K, (2)40(2)]

Here we have quick convergence as (N-k) decreases, to

K (2) — 1+ v5 = 3.236068
L (2) — ;_;_/'_;_ = 1.618034 .

as seen in Table 5.1, below.

k
Kk(2) LK(Z)
N 3 -
N-1 3.2 1.6
N-2 3.2307692 1.6153846
N-3 3.2352941 1.6176471

Table 5.1: xk(z) and Lk(Z) for example 5.1.




Now we examine what happens when rN_l=l. We are given that

2
VN(xN'rN_l) = xNKT(l)—O.

Now consider the situation one stage back in time. With probability

p(1,2:xN) the system will switch to form 2 at time N, and we will be

charged
, KN(Z) 5
= 4
M -+ *N
Q(2)

With probability [l-p(l,z:xv)] the system will stay in form 1 and
N

we will be charged

2 KT(l)
xN -

Q(1)

In addition we will be charged a control cost

2 2
u =
N1 R = v

for whatever control we choose. That is,
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N-1
-~
1) = min <

b4 r = 2
N-1""N-1 ., p(l,l;xN)[xN+VN(xN,rN=lﬂ >

Vn-1

+

\ p(l,2:xN)[x;+VN(xN,rN=2ﬂ )

N-1
+

2
By ) P lixdx >

- +

. 2

- : 4 .
p(l,2 xN) xN

4 )

. Note that we can control the failure probability p(l,Z:xN), and thus
the cost incurred at time N, by our choice of Xy (through the choice

of uN-l)' It is this point that makes V,_;(x 1) a non-

N-1'FN-17

quadratic function of X 1° However, as we have indicated,it is

piecewise cquadratic and this is a direct consequence of the piecewise

:: constant nature of p(i,j;xN). The basic reason for this is actually
xS
Eﬁ quite simple and by going through it we can obtain an initial
;; understanding of the nature of the problem.
-
- Suppose that xN_1 has a given value. Then, by applying our
t: optimal control, one of three things will happen: either ﬁfoq:’ or
& - +
-1+§.xN <1 or Xg >1. In each of these cases the cost
- (L 1ix)x2> + p(l,2ix)4x’
B PULe2ixg Xy Pllreing ® %5
4
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is a quadratic function of Xy Consequently this suggests the

- following strategy for computing VN_l(xN_l,rN_l=l) and the

associated optimal control law:

For each of the 3 possible regions, solve the
constrained optimization problem assuming that
Xy is in the specified region. As indicated

above, each such constrained problem is guadratic.

Once we have the solutions to these problems, we

R

;j compare them and obtain the optimal solution by

é: choosing the smallest of these for each value of
Xe1° As we will see the result is a piecewise

quadratic cost-to-go and a piecewise linear

LA

optimal control law.

NN L VR

As we have indicated, in this example there are three xN regions:

A

(1) Xg < -1 where p(1,2:xN)=3/4
» + - _
. (2) -1 ¢ . <+1 where p(l,z:xN)—1/4
. +
. (3) 1 < Xy where p(l,2:xN)-3/4 .

; The three corresponding constrained control problems are

¥ . 2 13 2 g
o = - b — -
: Vg1 gy Eyoy 7LD = min .t {uN—l 3 xn} .
! N1 5 (5.7) 2
- <- 3
1571 3
- .
‘ N
; 1
a 1
129




o~ e B . Y
. 2 7 2
vN—l(xN-l'rN-l 1|2) = min U1 + 3 xN)
uN_lst. ) (5.8)
1T <1
-— N..l_
. ‘ 2 13 2 I
A . 3
o~ = + —
-5 L e e 'uN-l ry KN‘ .
{ ] Ug-15%- (5.9)
Coa +
AR <
e ol
=e Note that the costs in the first and third regions of xN values are
: the same, because of the symmetry of p(l,2:x) about zero.
:j' Consider the second x region:
+ -
. - < < .
) 1 Xy 1
-?:5 Differentiating VN_l(xN_l,rN_l=112) in (5.8) with respect to Uy
. and setting the derivative to zero, we find that
o = -, 5.10
uN-l(xN-l) 6363636 xN—l ( )
with the resulting cost
v (x ) = .6363636 x2 . (5.11)
. N-1""N-1 N-1
But this uN-l only solves (5.8) if the Xy that results from it

obeys the constraint

+ -
- < <1 .
1 xN
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That is, we must havel

+
- < = - <
1l xN xN—l .6364 xN—l 1

T R BB 8 et T e S Ve o ma A e . M7 MJ

which holds if and only if

-2.75 < x . 2 2.75

N-1
For xN—l > 2.75 the best value of xN in the interval (-1,1)
is x = 17. This is achieved if
X -a(l)x
u (x ) = N w N-1 1 -x
N-1 "N-1 b(l) N-1

and the resulting cost is

L R B PPN T W R S PO

) = x2 - 2x + 2.75 (5.12)

(X 1 N-1 N-1

vN-l

Similarly, for XN~1 < ~2.75, the best value of Xy in the

+ . . . .
interval (-1,1) is at xN = -1, This is achieved with

Uy Byop) =L - ox

TG _ MM 4 s A s S Ll M aa X 4NN S_ el

and the resulting cost is

) = x2 + 2% + 2.75 (5.13)

( N-1 N-1

VN-1%N-1

‘& 8 M. a4 9 _a_=

4 oA

_.

lRoundinq numbers to four significant digits. )

'
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Thus the optimal cost~to-go of (5.8) (where Xyg is constrained to be
in (-1,1) has the three-piece quadratic form of figure 5.5.
, is

The unconstrained cost of (5.11), as a function of xN_1

indicated by the dashed line. It applies for xN_le(-2.75, 2.75);

this is indicated by the solid over-line.

Y e

The constrained cost (5.12), corresponding to making xN=l- is

depicted by the dot-dash line. It applies for X1 > 2.75, as

S PLPAILY
s

) .
I

-

indicated by the solid line.

¥

+
The constrained cost (5.13), which results from xN=—l ., 1is

represented (as a function of xN—l) by the dotted line. It applies for

Xy € ~2-75. -

BT PRI

Note that the constrained costs ((5.12),(5.13)) are greater than

. -

the unconstrained cost (5.11) except at a single point. At this point
their values and their slopes match. This fact will be of interest

later in this chapter.

WIS PO

The other two constrained control problems (5.7),(5.9) can be

solved as we have done above for (5.8). Their solutions have only
a2 two quadratic parts because xN is not constrained in one direction.
;E The optimal expected costs-to~go for all three problems ((5.7)-

(5.9)) are:

T PPNy,
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FIGURE 5.5: VN_l(xN_l,rN_l=l]2) of example 5.1 is indicated by the solid

overline, where the dotted line represents the cost of driving

+
to xN=—l , the dot-dash line represents the cost of driving to

xN=l- and the dashed line indicates the unconstrained solution

of (5.8).
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. 7647058 x;_ if x_ . < -4.25

R N-1 —
v, (x o 1]1) =
N-1" N-1 2 .
. > ~4.
Xy t2% (¥4.2499985 if = , > -4 25
(5.14) ;
(2
+ +2. < =2.75
o1t E T2-7 5 if xg o < -2.7
| 2
.6364 . x if -2.75 <x_ .<2.75 {
Vi1 %1012 -<’ N-1 N-1 |
2
- +2.75 i > 2.75
\?N—l ZxN_l 7 if X1 2 2.7
(5.15) ]
\ !
x2 -2x +4.25 if x < 4.25 .
N-1 "TTN-1 N-1 - :
i
v,  (x_ .,1]3) = .
N-1 "N-1 2 . 1
. > 4.
7647 xN-l if xN-l > 4.25 S
(5.16) :

These costs are shown in figures 5.6, 5.5, and 5.7, respectively. J
Having solved the constrained problems (5.7)-(5.9), we are now

ready to compare them:

( ( =1|t) .

1) = min
t=1,2,3

P T P

VN-1 -1 n-1" Vn-1 -1 Fn-1

This is done graphically in figure 5.8.
Choosing the lowest of the three constrained costs at each

value, we see that:
*N-1 ’

el B i B B e ARSI S,




VN-l("N-iv'N-i =1|1)

' ——
/
/
/
"XN<-1-"’l /
I /
| /
| /
| 7
\ e Y 4.25
! \ — -—3.25 /,
] \\ P4
——Hh TN G | ' >
-6 =5 '-4 -3 -2 -4 1 2 3 4 5 XN-1
-4.25
FIGURE 5.6: V,_,(x. ,,r  =1|1 ) of example 5.1 is indicated by the solid

overline, wherethe dot-dash line represents the cost of driving

to xN=-l- and the dashed line indicates the unconstrained

solution of (5.7).

P N N T P

- Mt e a = .



L
[
[
!

TP — v
L PRI 3 LN
Ll B T S, soTE g e
ot Gl ey PR
.
.
[

T

’
[

I S L L L e e AR o e A A SNl

Lt e s T Y
R N LR
L] . P Gt

. P [TARSA
e e e
e PR PRI

Y g e 4
.

0 L

L

-6

-5

FIGURE 5.7:

-4

V-1 -1/ TN-1

overline, where the dot-~dash line represents the cost of

=l|3) of example 5.1 is indicated by the solid

s + . . . .
driving to xN=l and the dashed line indicates the unconstrained

solution of (5.9).
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‘VN-1 (XN-j ’ rN_1 1)

134,84
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I

FIGURE 5.8: Determining Vﬁ_ (
the constrained subproblem costs.
indicated by the dashed line,

line and V (

1 ¥N-1" NS
VN-1

V-1 %1
N-l xN-l'l|3) by the dot-dash line.
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=ll) in example 5.1 by minimizing
(xN_l,l]l) is
,1/2) by the dotted
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(1) ( =1|1) is optimal from x _,=-= until \

Vi-1 -1 -1 )
it crosses VN-l(xN~l'rN-l=ll2)' at :
Xy, = ~6-7684932. :

(2) v, . (x .,r_.=1]2) 4is then optimal until it 5
N-1""N-1" N-1 :
crosses VN_l(xN_l,rN_l=l|3) at X1 6.7684932.

(3) Then V_ _( =1|3) is optimal for all

N-1 °N-1'FN-1

larger xN-l.

From (5.14)-(5.16), we find the values of the costs at their
intersections is 38.84.

Collecting the above information we have that the optimal

k)
.
PCTNVTEIY' W WIRINIEIRY Y UL VLSS ¥ T

expected cost-to-go from (xN_l,rN_1=l) is -
(.7647058 x° if x <8 . (1)
N-1 N=1— N-1
2 . ;
< <
X1ty 1 +2-7499997  if &, (L)<x <8 . (2) L
VN.l(xn-l'rn-1=l) = 2 :
i < <
< .6363636 x| if 8 (<x, <8 L (3) 3
2 ;
- i <
Xy ("2 +2.7499997  if GN_1(3)_}N_155N_1(4) |
2 . 1
\ .7647058 X1 if 6 (DX, -
(5.17) ;
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The optimal control laws are

( -.7647058 %, if xN_lf_SN_l(l)

- - i < <
AT B 1 if & (k<8 (2)

N-1""N-1'"N-1

< - i < <

-6363636 x_, if § . ()<x <6 (3)
- i <

xg1*L if GN_1(3)_3N_15§N_1(4)

\ -.7647058 x , if § . (4)<x .
(5.18)

and the value of Xy obtained by application of the optimal control

law is
(. o ox s
2352042 %, if x <6 (1)
-1t if 8 L (L<x <8 (2)
xg (% iE (=1 = M-l - 15081
. i <
{ 3636364 x\  ir 8 (d<x, <6 ()
- . )
1 £ 8 (3x, <6 (4)
. i <
2352942 X1 if 6N—1(4)—FN-1

(5.19)

where we denote the "joining points" (where these quantities change) by

81 = -6.77

8y 1(2) = -2.75

N
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The notation x_(x ) in (5.19) is used for the optimal -

N FN-1TN-1

value of xN that is obtained in form rN_l, as a function of xN—l

This notation will be used in the remainder of the thesis. The
optimal expected costs-to-go, control laws and obtained . values

are illustrated in figures 5.9, 5.10 and 5.11, respectively.

Figure 5.9 (VN-l(xN—l'rN-1=

1) has purposely not been drawn to scale
so that the behavior at the joining points can be clearly seen.
In light of the solution of this last-stage example problem

we make the following observations and claims:

l. From (5.17)-(5.18) we see that in this example

V-1 Fg-1Fn-1

piecewise-quadratic in xN-l and the optimal

control law is piecewise-linear. When we go back -

the optimal expected cost =l) is

another stage in time, the optimal cost
(

1) can be obtained using a similar

V-2 By-2r -2

approach. Things become more complicated, however.
Specifically, one step further back we will confronted with another
optimization problem to compute the optimal cost-to-go. Following
the same procedure, we can break the real line into regions in which
the function to be optimized is quadratic. 1In doing this we must

(

=]l) we are

take into account into what Xg.p Piece of V X-1"Tn-1"

N-1

driving the system as well as into what probability piece.

140°
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*VN-'(xN.q ,l)

FIGURE 5.9:

VI IR e SR

The optimal expected cost-to-go from (x =l) in

N-1"FN-1
example 5.1 (not drawn to scale).

t
. R L. . e K ¢ R TEE ot Tttt LT e
[ AV_’ 1__'-_4*.:.4;;‘_"! P _.;--..‘,_'_.'41.. @@14!#@*@,@;“44_!4;Lﬁ4_‘_& L . SIS

. .

L



Mbren pew 2 ua en S Snse Avie 3 an Setn Ante “AGadian J0de Jine - 2 Shest e

— — — —

<— Hedge
to

e

S S
| 1
]

«
1
4
!
1
q
Kl
1
A
B
'i
q

— 1.75

|

: 85-1(3) 8n-1(4)

| 275 6.75

-6.75 -2.7% lr
3 By, ‘

.75 - '

e o — . — G Gewy S e — ——

I i
[ |

'ﬁ

"'-"'}5' .j--' t ‘i'.' f

ARSI . B
n'_ W n
—
. Py

Je b

FIGURE 5.10: Optimal control laws from (xN_l,rN_l=l) in example 5.1.
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controls, in example 5.1.
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) xN(xN-' ’1)
-— XN<‘1-—" l"—-f+<XN<1:.1 p—— 1+<XN—' ‘
| Hedge | Hedge
to C e s o |
r- L IVER X~3'H-
T1.588 Region of
| ! } avoided
| | T 7 Xy values
By()  Byy(@ Bn-i3)  By_@
t } t t >
-6.75 -2.75 2.75 6.7 5 XNt
|
Region of -+ I l
avoided |
Xy values ' +-1.588
| | |
| | | |
FIGURE 5.11: Xy values obtained from (xN_l,rN_l=l) using the optimal
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It is intuitively obvious that the optimal expected cost-to-go
Vk(xk.rk=j) will be piecewise-quadratic in X (and the controls
piecewise linear) at each time stage k. The bookkeeping details of

this will be taken care of in Section 5.4.

2. In figure 5.9 we see that at GN_l(Z) and GN_1(3),

the optimal expected cost has continuous slope. At GN_l(Z)

and GN_1(3), the slope decreases discontinuously.
This illustrates a general property: at its "joining
points" {Si(t): t=l,....Mk(j)—l} the slope of the

optimal expected cost-to—go Vk(xk,rk=j) is either continuous

or it decreases discontinuously. (see Proposition 5.1).
3. 1In figure 5.10 we see that at'§ . (1) and §_ , (4),

the optimal controls are discontinuous in L - .

However at GN_l(Z) and SN_1(3), the controller is

continuous (and the optimal cost is differentiable).
In general, at each of its joining points
3 . iy
Sk(t) the optimal control law uk(xk,rk—j) is
discontinuous if and only if the slope of

Vk(xk,rk=3) decreases there, and uk(xk,rk=3) is

continuous but not differentiable if and only if

Vk(xk'rk=j) is differentiable there. (see Proposition
5.3 in Section 5.6).

4. Note that for X1 negative enough, the optimal

controller (in one time step) does not drive Xy




into a different probability piece. That is,

¥ < i
. for X1 6N_l(l), the optimal controller keeps

. xN < -1. Similarly for xN_ large enough, the

1
optimal controller keeps xN in the same proba-

o bility piece; for X1 > 6
_ KN > 1.

In general Vk(xk,rk=j) and uk(xk,rk=3) have

N_1(4), we get -

extreme regions of xk values (left endpieces

for x < 6; (1) and right endpieces for
X > 6; (mk(j)-l)) from which the optimal con-

troller will never (through the terminal time N)
drive the system into a different piece of the

form transition probabilities pji (for any form i

‘[; accessible form j). The properties of these end-

pieces will be addressed in detail in Chapter 6.

5. Let 2
Kp41R(Fk+1) + S(rp ) Xk+l + P(rg+1)

9 ( r =j) = E =
e e |73 * Vierl (Xpeel 1 Trpq K

- denote the conditional expected cost-to-go from

- (xk+l'rk+l) given that r.=3- This is a function of x .-
Por this example, the conditional expected cost
VN(xNIrN41=l) is shown in figure 5.12, and is

given by

VN(

xglrg =) =
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VN(xN{rN_fl) for example 5.1.
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As we shall see in later sections of this
chapter, the behavior of this conditional
expected cost function is intimately related
to qualitative properties of the optimal
controller and combinatoric properties of the

solution.

One relationship is apparent from example 5.1: active hedging to

a =‘\ 3 -
a point from (xk,rk j)} occurs only to points xk+l where the con

A

ditional expected cost V

k+l(xk+l|rk=j) is discontinuous; these

points can only arise from form transition probability discontinuities.
This will be proved in section 5.6.

For 2ol values between GN_l(l) = -6.77 and GN_l(Z) = -2.75,

the optimal strategy is to drive Xy into (~1,1), where the conditional
~ +
expected cost~to-go VN(lerN_l=l) is lower. Thus we have xN=-l here.

Similarly for x values between GN_I(B) and GN_1(4) we get xN=l .

N-1

In these two regions of x values, the optimal controller actively

N-1

hedges to a point. That is, it uses control Ueo1 to alter the

probability of failure p(1,2;xN) value. In this example the
system actively hedges only to points Xy that are transition

probability discontinuities.

6. For GN_l(Z)g.x l(3), the optimal controller

<
N-1 — 6N—
doesn't have to actively hedge since the system is

driven into (~1,1) by (5.10) anyway.

PSP S - PIPIP IO S SV SN a s




This is true in general for systems with purely quadratic costs

(i.e., S(i) = P(i) = HT(i) = GT(i)=O, all i € M). For such systems,

Vk(xk,rk=j) and uk(xk,rk=3) have middle pieces containing xk=O,

from which the optimal controller never (through terminal time N)
drives the system into a different piece of the form transition pro-
babilities pji (for any form i accessible from j). The existence and

properties of middle pieces will be addressed in chapter 6.

7. In figure 5.l11 we can see that certain xN
values are never obtained by the optimal

controller. In particular, we have
x, € (-1.589,-1), x_ ¢ (1, 1.589).
These regions gf_xN avoidance are state values that the system must
avoid if it is to be optimally controlled. Note that these regions
of X avoidance correspond to Xy-1 Values where VN_l(xN_l,rN_l=l)
is not differentiable (ie., GN_l(l) and GN_l(Z)).

In general, there is a region of xk+l values that is avoided
from (xk,rk=j) corresponding to each nondifferentiable point of the
optimal expected cost Vk(xk,rk=j). This is shown in Proposition 5.3
(in section 5.6).

In the next section we will develop a procedure for the solution

of one stage of the general problem formulation of section 5.2,

and we will verify the first two of the seven claims above.
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5.4 One Stage of the General Problem

In this section we use intuition gained from the example problem
of the last section to solve the optimal control problem of section 5.2
for one time stage. As we indicated earlier, the notation and "book-
keeping" becomes quite complex, but the basic idea is the same as
illustrated in the previocus section. Inductive application of the one
stage solution (backwards in time from finite terminal time N) then
establishes that the solution of problem (5.1)-(5.6) yields optimal
expected costs-to-go that are piecewise-guadratic in x and optimal

control laws that are piecewise-linear, for all forms j € M:

1 — 2 u. .‘ o.
vk(xk,rk—j) = JLKIS{(‘C-J) + kak(t.J) + Gk(t.]) (5.20)
uk(xk’rk=j) = -Lk(t:j)xk + Fk(t:j) (5.21)
when
J 3
Sk(t-l)< X < Gk(t) ’ (5.22)
where

J p) 3 oy
{ak(1)< ak<z) <...<5k(mk(3) 1)}

are the points where the pieces of Vk(xk,j) are joined together
(the boundaries of the X -intervals) and

iy 8 e 3 vy 8
ék(O) = -, 5k(mk(J)) ®

The proof of the one-stage optimal controller result is cons-

tructive. It suggests an algorithm for the recursive determination

of the optimal expected costs-to-go and control laws for this problem.
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The one-stage solution result is as follows:

Proposition 5.1: (One stage solution)

Consider the problem of section 5.2. If at time k+l, for each

Tppy = 3 € M we have
(1) Vk+l(xk+l'rk+l=j) is piecewise-quadratic with
mk+l(j) pieces joined continuously at

3 3 b L
{6k+l(1)< sk+l(z) <...< 6k+l(mk+l(3) 1)}

>0

(i1) <Kk+l(t:l) Hk+l(t:l)/2>

Hk+l(t:l)/2 Gk+l(t:l)

for t=l,...,mk+l(3)

(iii) 9 (xk+l'rk+l=j)

9%y 1

tinuously at the joining points {§

\'/
k+1 . . .
is continuous or decreases discon-

3

; .
k+l(l)'.'.'6k+l(mj(+l(3) 1)}'

then for each rk = jeEM

(1) Vk(xk.rk=3) is piecewise-quadratic and uk(xk.rk=3) is
piecewise-linear (as in (5.20)-(5.22)),each having

mk(j) pieces joined continuously at

3 3 3 oy
{ak(1)< ak(z)<...< Gk(mk(a) 1)}
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;ﬂ (2) <1<k<t:3) B, (£:9)/2
E

)ZO t=1,2,...,m (3)
Hk(t:j)/Z Gk(t:j)

(3) avk(xk,rk=j)
ox

tinuously at the joining points {6i(l),...,6i(mk(j)-l)} .

is continuous or decreases discoii-

C
At time k=N, conditions(i-iii) are clearly satisfied. Thus this
proposition can be applied inductively, backwards in time from k=N.
Equations for the iterative computation of the quantities mk(j),
R (t:3), H _(£:3), G, (t:3) and {5]31(1): P=1,....m (3)-1} for each
i, j € M are listed in appendix C.l. These equations are developed
in the proof of Proposition 5.1, which constitutes the remainder of

this section (with some details in appendix C.1). !

Proof of Proposition 5.1:

For each form r, = j € M, the minimization in (5.5) subject to

(5.1)-(5.2) is converted into the comparison of a finite set of

constrained -in

X 41 JLQ problems, each with x-independent forms. ]

This is done conceptually via the following four steps:

Step 1l: Obtaining a Composite Partition of xk+l values from the a

partitions associated with the form transition proba-

bilities p(j,i;x) and the expected costs-to-go
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( =i) for each i € cj. Note that

Vit Fre1 Tkel

the partitions are of xk+l values for each dif-

ferent form at time k (not at k+l).

Step 2: Formulating a set of constrained (in xk+l) JLO problems

having x-independent form transition probabilities and

quadratic costs; one problem for each region of X el

values in the composite partition of Step l.

Step 3: Solving the constrained subproblems that are formulated

in Step 2. These problem solutions represent the

optimal expected costs-to-go from (xk,rk=j) if

xk+l is constrained to be in one of the specific

regions of values defined in Step 1.

-

Step 4: cComparing the constrained costs. The optimal expected . !
-t 0= =9 v i

cost~to-go Vk(xk.rk j) from any X, alue is the

minimum of the constrained expected costs-to-go that 1

are obtained in Step 3. This minimization involves the
comparison of piecewise-quadratic functions in xk.

We will describe each of these conceptual steps in sequence so as to

demonstrate the validity of Proposition 5.1. The actual solution
algorithm (as described in chapter 7) mixes these steps and uses the
compinatoric results of section 5.6 to solve the control problem ef-

ficiently (i.e., with fewer calculations.)

LPOIPATRY . AN

D T I L T R e 'y




.......

Step 1l: Obtaining a Composite Partition of x . For each form

k+1

j € M we construct a composite partition of the real line
3 (i.e. for X1 values) by superimposing the grids associated

with each p(j,i;x) and Vk+l(xk+l'rk+l=l)’ for all i € cj.
The construction of these composite grids is first
- illustrated for an example system below. The general

procedure is then specified.

Example 5.2:

gL T

e e
S .
ST

= Consider a system whose form structure is as shown in figure 5.13.

This system might represent the following situation:

R A

&; rk =1 normal operation
"’ rk = 2 degraded operation (repairable failure)
rk = 3 nonrepairable failure
p(l,2:x) one-step probability of repairable
failure occurrence (x-dependent)
p(2,1) one-step probability of repair
p{l,3:x) one-step probability of nonrepairable

system failure occurrence.

?' The form transition probabilities from rk=l are piecewise constant in x

(but p(2,1), p(2,2) and p(3,3) are x-independent).
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p(1,3:x)
p(|,1:X) 9(3,3)31

FIGURE 5.13: Form structure for example 5.2. Form 3 is an
absorbing form. Here ¢ ={1,2,3}, c_={1,2},
1 2
c3={3}.




Rl ~heat D Sinait-hhatl St

(.89 .1 .oy if x| <1
(p(1,1ix) p(1,2:x) p(1,3:x)) =< (.7 .2 .1) if 1<|x| < 2
(o .2 .8) if x| > 2

p(2,1) = p(2,2) = .5

Thus the numbers of pieces in each of the form transition probabilites

are
V11

V12

Vai

The x-dependent

Vi, =5
3
Vaa T Vo3 T V3; T V35 = V34 =l

transition probabilities are shown in figure 5.14.

Suppose that at time k+l, the number of pieces in each expected

cost-to-go V

My (1) =5

as illustrated in figure 5.15.

k+1

(xk+l'rk+1=l) is

mk+l(2)=5 mk+1(3)=l

Superimposing the appropriate par-

titions for each form rk=j € M, we obtain the composite partitions

of %41

partition, denoted by

1

Ves1™

values shown in figure 5.16.

The number of pieces in each

j
k+1 2re
2 3
o V™7 Vrsr=t
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p(1,1:x)
Ny(3) = |.89
>‘11(2’= x”(u)=.7
l
Ay, (N=0 X, (5)=0
L L —>
-2 - ! 2 xk+l
v ¥,(2) v,4(3) vy, (4)
{a)
$ o(1,2:x)
Ajp(1)=.2 Xpp(2) |= . Ayp(3)=.2
—
-1 1
2) xk+1
2P <P
(b)
A,,(1)=.8 ’ p(1,3:x) A ,(5)=.8
13t V= .3 13 )
X13(2)=.1 X13(4)=.1
Xq3(3) = .01
L i
-2 -1 1 2 -~
3yl vy5(2) ¥3(3) a8 ket
(c)

FIGURE 5.14:

Piecewise~constant form transition probabilities from form

r, =1l in example 5.2;

k

(b) p(1,2:x) with ﬂi2=3 pieces, (¢) p(l,3:x) with

v13=5 pieces.
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(XK-H 'rK+1 =1)

XK+

]

S -—-

]

(¢7]

T ul
2 Hp-—-—-

(4)

1 i
8K+1m SKH(Z) 8 (3) .l

! i 1 l
—>
-3 XK+

® B By @) 8K+1(3) 3K+1“’
(b)

‘ VK"" (XK*"’rK*|=3)

7

(c)

>

XK+

FIGURE 5.15: Piecewise-quadratic 2xpected costs-to-go from (xk+l'rk+l)
in example 5.232) vk+l(xk+1'rk+l=l) has
mk+l(l)=5 pieces, (b) Vk+l(xk+l'rk+l=2) has mk+1(2)=5

pieces, (c) Vk+l(xk+l'rk+l=3) has n1k+1(3)=1 piece.
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(a)
Ve .
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-4 -3 -1 ] 3 4 *
2 2 2 (3) 2 (a) 2 (5) y2 (6) K+ )
)’K“(I) 7;(4’1(2) YK-H YKN( >;f+l 7;(4'1
(b)
v,
K+t =
3
- AKﬂ(” -
]
*k+1
(c)

FIGURE 5.16: Composite Kerl partitions for example ~.1l; (a) for rk=l é
the partition has wk+l=9 pieces, (b) for rk=2 the K
partition has "’12<+1=7 pieces, (c) for rk=3 the partition

3 .
has lbk+1=l pieces.

~~~~~~ , - P P T T T . S

.......



-~ A i3 haet s Shde B Jaomer S o % VT, — — T ——— " e e e e S e aass e
............ AP el A A ST T T TR AR O . E S

- Vo Pt e e e
P A
o [ N

The intervals are denoted by
*k+1

"vrv
Jn‘-’fn‘ 4
R

3 _ 3
Ak+l(t) t l""'wk+l

2 o

with boundary values (grid points)

3 b
Yk+l(t-l) and Yk+l(t) .
g

The general procedure for obtaining the composite partitions is
as follows:
For each rk=j € M the real line can be divided into a finite

number of intervals of xk+l values by superimposing the grids

i _ .
{6k+l(t): t—l,2,...,mk+l(1)-l}

{vji(t): t=1,...,v,.-1}

ji~
for each i € cj ’

obtaining the composite partition

A

o B3 3 j A
@ Yk+l(0)< yk+l(l)< Yk+l(2)<...< Y

j i o 3 j
bl Ve 1< Yo W)

of unique grid points. As in example 5.2, we define

wj é the (finite) number of such nonempty
k+1
xk+1 intervals

where the tth such interval is

Al 8 x

L d
k+1 k1’ Ykl (e} .

j
- <
(t-1)< X 41 Vi1

tal' LRI 'wi'{-l-l




Note that

i el 5 —dulst eae -1
wk+l 1+ J;i [{vji(l).l l,...,vji lﬁJ{6k+l(2).2 l,...,mk+l(1) lJ
J

(5.23)

where |Al denotes the cardinality of a set A (the number of elements).

An upper bound on wi+l is given by
o<1+ § M., +m . (i)-2] (5.24)
k+1l — . ji k+1
lecj

where the equality in (5.24) holds if

i
vji(l)# vjn(o) vji(l)# 6k+l(t)

for all i, necj. 2=1'2"'.'Gsi-l £=1,2,... M) (L) -1 and o=l,...,vjn-l.

Note that in example 5.2, the boundsof (5.23) are not tight because

of the overlapping values:

1 2

1 2
-3 = 6k+l(2) = 6k+1(1) 3= 6k+1(3) = 6k+1(4)
-2 = vll(l) = v13(l) 2 = vll(4) = vl3(4)
2 2
-1 = v11(2)=v12(1)=vl3(2)=6k+l(2) 1=vll(3)=v12(2)=\)13(3)=6k+l

(5.25)

160

(3)

,4:
¢
:
1
1
d
4
-
5
7
-1
1
B
R
4
b
Kl




Step 2: Formulating the Constrained Subproblems

In Step 1 we obtained for each rk=j € M a composite par-

s , b )
tition of Kbl values into wk+l intervals. We can formulate
for each rk=j €M a set of wi+l constrained JLQ problems
having xk+l -independent form transition probabilities

and quadratic (not piecewise-quadratic) expected costs---

one corresponding to each region of X4 values. To see

this note that over 2ach such region Ai+l(t),

(

={) 1is quadratic and

Vel Pl Tkl

p(j,i;xk+l) is constant in x

Y for all i € cj. These

constrained problems are

—_ j + é i =
v Ix o =ilx e & (0] =V [x 3]t

2_ . 2 .
ukR(J) + xk+lQ(rk+l'

= min E

. s.t. + s(rk+l)xk+l + P(rk+l) (5.26)

3
41 Ak+l(t) * Vk+l(xk+l'rk+1)
W R(3)
= min " 2 o(i) + x_.s(i)
i u, s t M Xx+1 k+1
cad (o izl P i,k ]+ PL)
Her” e +Vk+1(xk+l’l)

{5.27)
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) mint ; 2R(5) + ¥ (x| =')I (5.28) '
Y S-E Yt k+l i1 I ° 4
e dd (v y
xk k+1l .
subject to {(5.1)-(5.3) for each t=1,2,. "'wk+1 .

Step 3: Solving the constrained subproblems

The third step in this constructive proof of Propogition

5.1 is to solve the constrained JLQ problems of (5.26).

As in example 5.1, for each rk=j € M the solutions

of these wi+l constrained optimization problems

involve optimal expected costs-to-go that are piecewise- % .
quadratic in x with three parts (except for t=l1 and

t = wk+l which have only two parts):

I‘(xk,j) if a(3)x < 8)(0)

VR

IU

= 3 - 3 3
v Ix .z, jl:ﬁﬂ_le A g (0] (xk,J) if 8. (6)< a(3)x < 8. (¢)

NN PRI

t
k
:'R(xk,J) if e’(t)< a(i)x,

(5.29)

with corresponding optimal control laws

.. JRNaY
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o o 0

t,L oy . . 3
uk (xk,J) if a(J)xk < ek(t)

naatadiodiR A

u o j . j
(xk.J) if ek(t)< a(j)xk< @k(t)

w I .r =jlx e A;+l(tﬂ = .
wla i) 1 gwcamx

(5.30)

The derivation of expressions for these control law and expected cost

pieces involves straightforward (but tedious) algebraic manipulations
that are described in Appendix C.2. Formulae for the quantities in

(5.29)-(5.30) are listed for reference in Appendix C.1l.

9§ WA

As in example 5.1, one piece of each expected cost-to-go in (5.29)

and control law in (5.30), denoted by V (xk +j) and uk (xk,j), :
corresponds to performing the minimization in (5.26) without the )

tu,. . i
21 Ak+l(t) constraint. The functions V (xk,J) and u. (xk:J) solve J
{5.26) only for those X values for which the constraint xk+l€ A§+l(t) f
is inactive, that is, where application of the control that minimizes ;

. . X . j .

(5.26) results in an X1 value in the interior of Ak+l(t). We define !

OJ(t) and OJ(t) so that these X values (where V (xk,J) applies) satisfy

3 . 3
ek(t)< a(J)xk< Gk(t).

For t=2, 3,...,w another piece of V, (x j|t) in (5.26), denoted by
’

k+l

by V (xk,J), corresponds to driving xk+l to the 1eft boundary of con.~

i 3 : = -
straint region Ak+l(t)‘That is, X [Yk+l(t l)] . The functions V (xk 0 3)

$,050

t,L .
and uk’ (xk,J) solve (5.26) for those X values where the constraint -

% € Ai+l(t) is active, and where u;'u(xk,j) results in xk+1<Yi+1
: t,L t,L j j )
That is, V" (x.+3) and v, ""(x, ) solve (5.26) for a(j)x, < O (0

(t-1).

3y I




- i . . .
For t=1,2,.., wk+l 1 another piece of Vk(xk.Jlt) in (5.26),
t,R . . . .
denoted by Vk (xk,j), corresponds to driving xk+1 to the right
boundary of constraint region Ai+l(t). That is, X" [Yi+l(t)]-.

: t.R,. . t,R {
The functions Vi (xk.J) and W (xk,j) solve (5.26) for those X ‘

. J . . t.u .

values where the constraint Ak+l(t) is active, and where uk (xk,J)
. 3 . t,R . t,R .
results in Xel > Yk+l(t). That is, Vk (xk,J) and W (xk,J)

solve (5.26) for
atix > ei(t) i

For t=¢i+l there is no finite right boundary of Al (wj ) (i.e.,

k+1l "k+l
(wj ) 4 ®) , so there is no Vwi+l’L(x j) iece; thu .
Ve Viea1 ' e 3} piece; s c
O (b)) = +° in (5.29)-(5.30). We summarize the solution to (5.26) ;
1
in table 5.2. i

For t=2,3,..,wi+1-1 a typical three-part ]

vk(xk,rk=j|xk+le Ai+l(t)) looks like either (a),(b) or (c) of figure

5.17. Here the quadratic (in xk) function

V;'L(xk,j) is denoted by the dotted line

V;'U(xk.j) is denoted by the dashed line
t’R .

Vi (xk,j) is denoted by the dot-dash line

164




Lo adin 28

-------

"‘.l.'."‘"

L

Pieces of valid for values the optimal solution of
j of X such {(5.26) results in
Vexon=iln g A ) o, X4y Such that
and

W (o =ilx € AJja-l(t»

- et
v;'L(xk.j) Ker1™ ey (8711
a(j)xk < ei(t) 22 the left boundary

T _
L Ai+l(t)

t=2,...,wi+l

ver Vx5
k 8) ()< a(d)x, < @ (¢)
t,U . J - J
W (xk.J) Yk+1(t l)<xk+l<Yk+l(t)
t=l'---,¢i+l in the interior of
p|
Aesr (e
t,R R
Vk (:ﬁ‘.J)
3 . o [y] -
tR, N Gk(t)ga(J)xk X1 [Yk+1(t)]
uk Xk on the right boundary
j of .
t=llooc'w -1 J
k+1 Ak+l(t)

Table 5.2: Pieces of V, (x .r =j|t) and u (x ,z =j[t)

4
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X
Rl
N
1
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DO

The solid line in each figure indicates which of these three cost
functions applies over various * values.
The three different possible shapes of Vk(xk,j|t) shown in

figure 5.17 arise from the relative values of the minimal points
= j 3
of (xk /3, V (xk (3) and v (xk j). At Xy ek}t)/a(J)

the values and slopes of V (xk.j) and V (xk,]) are the same.

At xk = Oj(t)/a(J). the values and slopes of V (xk,J) and

Vt' (xk,J) are the same. At éll other xk values, the constrained costs
are greater than the unconstrained costs. That is, for t=2,...,wi+l-
P> vl L9 X # e /al)
L , U0 .
( .) = Vv (x IJ) .
*%,3 ot e k Tk o3 (&)
X = L = X (5.31)
k  a(3) * T 2
t'L . t:U »
BVk (xkt j) - avk (xkl 3) 5
axk ei(t) axk ek(t) (5.32)
b "PYEY % = Ta
and for t—l,...,wk+1
3
(t)
t,R . t, , ek
Vk (xk'3)> Vk U(xli) ’ﬁ‘ ¥ a(t)
167

-
h;‘_LAA_._‘_:AIAI‘-‘:_AL‘:A‘AMIJM-‘ Tl e -



TELST.TLT YT OTLAYL.Y o8 O T.wWr s & v s a4 ™M

(5.33)

« 37,

As is evident in figure 5.17, since V ( j) and V ( ,J)} have
*k, %

L o

the same curvature it follows that:
(xk,3)< v (xk.;)lf a(i)x, > GJ(t) (5.35)

(xk,3)< vyt (xk (3 AE a(d) x < eJ(t) , (5.36)

Step 4: Comparing the Constrained Costs.

The fourth step in this proof of Proposition 5.1 is to
compare the solutions of the wi+1 constrained JLQ problems
specified by (5.26). For each r, = JeM, Vk(xk.rk=j)

at each xk value is the smallest of the constrained

costs in (5.29). That is,

- 3
v, (%, T, =3) min o LV (T = 3|2 1€ Ay (B
tsl"..'wk+l

(5.37)
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This minimization involves the comparison of piecewise-quadratic
functions in X

In principle we can use (5.37) to find Vk(xk,rk=j) and

uk(xk,rk=j) (that is, the quantities Kk(t:j), Hk(t:j), Gk(t:j),

4 s 3 . e oy . . _
Lk(t.J), Fk(t.J). {Gk(t). t l,...,mk(J) 1} and nk(]) as in (5.20)
(5.22)). This minimization was done graphically for example 5.1.

In general, we must accomplish the minimization of (5.37) by finding

the intersections of the (3Wi+l-2) quadratic functions

N L Ly T T T T YT YTy TR

—

(5.38)
and choosing Vk[xk,rk=3] at each value of x to be the one having the

lowest value there (for those costs that are valid at xk). Thus
Vk[xk,rk=3] is piecewise-quadratic in xk and uk(xk,rk=3) is piecewise-
linear, as claimed in (1) of Proposition 5.1. The verification of (2)
in the proposition is straightforward.
The fact that
avk(xk,rksj)

9%

is continuous or decreases discontinuously

at the joining points {6;(1),...,6i(mi(j)-l)} follows directly from the

comparison in (5.37): a particular joining point Gi(z) can arise

in two ways:
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H (1) two (or more) of the constrained costs-to-go in i
- j . - :
: .37 . = -
g (5.37) may cross at Gk(ﬂ) Since Vk(xk,rk j) :
: is the smallest candidate cost at each x_ value, :
- the slope of vk(xk'rk=3) must decrease discontinu- ;
f. ously at such a 6)1(9,) . This is illustrated in figure5.18.
-f (2) 63‘(2) may be an X value where the optimal candidate
N cost in (5.37) changes from a constrained piece to (
- an unconstrained piece (or vice versa). That is,
: 5]1(2.) corresponds to either
) . . .
N * X ek(t)/a(:)) where Vk(xk'llt) changes
- L £U, . . .
- from v (xk:J) to V. " "(x +3) and W) (%4 |t) /3% is continuous or

. = ej (t)/a(j) where V, ( 'lt) changes from Vt'U( r3) <
¥ " T %k J k%’ ko %k
b v R(x ,4) and v ' i i
5 k ‘®3) an k(xk,J[t:)/axk is continuous. ;
n,
. This concludes the proof of the one-stage solution given by )
:: Proposition 5.1. Certain qualitative properties of the optimal "
controller that are developed later in this chapter and in chapters 6,7
2 will be used to simplify the procedure that is described above. The
. actual solution algorithm is presented in chapter 7. 1In the next sec-
.- tion we will demonstrate the application of steps 1-4 in the next stage

= (k=N-2) of example 5.1.

)
RPN
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{. 5.5 The Next Stage of Example 5.1

In this section we demonstrate the application of the four steps
L{E detailed in section 5.4, by solving the next stage of example 5.1.

From this example we can gain further intuition about the qualitative

and combinatoric properties of the optimal controller which will be
.f. exploited in section 5.6 and chapters 6 and 7.
{ First we note that the last stage solution of example 5.1 that was
i:j carried out in section 5.3, in terms of the notation of section 5.4,
EE involved the partitioning of the real line (of . values) into
: wN=3 regions
: A (1) g (v,(0),y (1)) = \(~,-1)
N N N !
p a(2) & (v (1),y (2) = (=1, 1) -
X N NN !
: 8.3 & (v 2.y, () = @, »
o N NN ’
i and
{$ eN_l(l) = -0 = -GN_1(2)
-il? -1 (1) = -4.25 = -0 . (3)
N 8- (2) = -2.75 = -0, .(3) .
N 1 oo . LI .1 1 I 1 1
The superscript "1" in yo, Au(€), Y (t), L O Oy (£}, 8, (t), etc.

R By

is suppressed in this section since we only consider r=1.

-
.
-
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From (5.17)-(5.18), the solution at stage k=N-1 is

2
VN_l(xN 1" Ty-1"1) Xe-15y l(t 1) + X-1Byop (B:1) + GN_l(t:l)
uN-l(xN l,rN_l-l) = -LN_l(t:l)xN_l + FN_l(t:l)
for 6N_l(t-1)< x. . < GN—l < GN_l(t)
where
P-p (1)=5
§y_p (0) = - Sg-1(3) = 2.75
= = 7 =
(SN_l(l) 6.7 GN_1(4) 6.77
N-1(2) = -2.75 GN_l(S) = ®
and
Kgp (1:1) = .7647 = K, (5:1)
KN_1(2:1) = 1 = &_1(4:1)
Kgp(3:1) = .6364
He (2:1) = 2 = -H__ (4:1)
HN_l(lzl) = HN_1(3:1) = HN_l(S:l) =0
Gy_p (2:1) = 2.75 = Gy, (4:1)
Gy1 (1:1) = Gy, (3:1) = G (5:1) =0
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Ly-p (1:1) = .7647 = Lgp(3:1) i
Ly (2:1) = 1 = Ly, (4:1)
LN_1(3:1) = ,6364 H
FN_l(Z:l) = =1 = -FN_1(4:1)
FN_l(l:l) = FN_1(3:1) = FN_l(S:l) =0 i

as shown in figqures 5.9, 5.10.

Now we proceed to the next stage, following the four solution steps

of solution 5.4.

Step 1:

Given {GN_l(l),GN_l(Z), GN_1(3), GN_1(4)} from section 5.2 and ¢ -

Add

the form transition probability discontinuities

S

v, ,(1)

12 -1

v12(2) = +1

we can obtain the composite partition of x_ .. From (C.1.1)-(C.1.3)

N-1

and (C.1.6) we can compute the conditional expected cost-to-go ]
Vo %y |Fgp=1) as well. We find that V. (x . |r, .=1) has :
wN_l=7 pieces with boundaries i
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2 A A A
xe (R (8) + x B (8) + G

<>

(

-1 Fyo1 [ Fge ™D

l(t)

if xN—le AN-l (t)

for t=1,... ,le_l (7)

— -t o mtm m

with :
Ke_, (1) =K, (7 = 3.501 ;
~ ~ {
Ky (2) = K_,(6) = 3.65 1
H,_,(2) = .5 |

2
]
=

Gg1(2) = G_,(6) = .6875
R, 1(3) = K, (5) = 3.559

Ky_q (4) = 2.277

A 4 MM e e s "a

~

(

= i i 5.19. )
Vo1 xN—ler-Z 1) is shown in figure ‘
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Step 2: The wN_l=7 constrained JLQ problems, as in {5.28) are

thus

=1|4) =

B.
2]

N-2 ¥n-2'TN-2

=1|5) =

B.

V-2 -2 Ty-2

2
uy_, + (3.5911765)x

2
1l

2 2
uN_2 + 3.65 xN—l
1
+ 3 xN—l + .6875

u2 + (3.5590909)x§_

N-2 1

2 2
+ 2.
U2 2.2772727 X1

w4 (3.5590909)x;_

N-2 1l

alad

RPN N LS

| RINPSINIRVAIANY ¥ RIS A SV RTRPRY i SRR

31
:
:
;
u
:

I U

PR P
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: 2 2
VN—Z(xN-Z'rN-Zglle) = min U, *3.65x . I

uN_zs.t L ’
X, 1€ AN_I(G) -3 ¥yt .6874999 ’

V. (x _,r _=1|7) = min 2 2

N-2 "N~2'"N=2 "N-zs't' Q2 + (3.5911765)xN_l
xN_leAN_l('?) .

Step 3: Saqlving these constrained problems (using the formulae of

appendix C.1l) we find that

LU 2 :
5VN_2 -78219 x . if x . £ -30.975976
v, . (x. .,1|1) -l LR [ -
N-2 N-2 2 ,
Vgop =%y * 13-537586 x| if x_, > -30.975976
+ 210.33327 ]
3
2, _[.2 1.
Vs F"N-z + 13.537586 x_,| if x,_ < -31.223493
+ .
Vo o a1]2) = i 210.33327 ]
N VU [ 7840462 xrzz-z if -31.223493<x_ .<-12.53749
N-2 1 . _XN_z_ .
+.1075268 X2
| +.674059
R a[x2 4 5 4999994 x if -12.537499 < x
N-2 |'N-2 N-2 S N-2
| + 34.478117
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3'L = 2 B .
V-2 Xz T 5°4999994XN—2 if xN_2_<_ 12.537499 .
Voo (B pe1]3) = + 34.478117 :
3,U 2 . K
= .7 -12. < . .
v, 80658x ,  if -12.537499< x < 4.5590909 :
3,R [ 2 . 0
= + > =4,
Vel =| %yt Pyp| i %y, 2 -4-5590909 :
+4.5590909
v4'L = x2 +]2x _+3.2772727) if x, .< -3.2772727 i
N-2  *N-2 N-277" N-2= 7" .
= U
VN-Z(xN-2'1l4) .0 , g
rY o, if =3. < < 3. 3
Vi, = -6948682x_  if -3.2772727< x_,< 3.2772727 3
viR =rx2 - 2x if x> 3.2772727
N-2 | *N-2 N-2 N-2 =
+ 3.2772727
v2r L Jx2 2k 4 45500908 if x < 4.5590909
N-2 T Mw-2 TN-2 N-2=
v>'Y = 780658 x> . if 4.5590909< x_ .< 12.537499
I N-2 N-2 ) - TN=2-- ‘
V. _(x. .,1|5) = -
N-2 N-z S,R 2 .
= -5, > 12.
vorD =l 5.4999994x o | if x> 12.537499
| + 34.478117
/ve,z. =|x®  -5.4999994 if x_ . < 12.5374999
N-2 | ®N-2 77 *N-2 N-2 = ~°°
|+ 34.478117
v, (x_ .,1|6) =) 6,0 2 .
- - = . N < < .
) N-2 ¥n-2 v 7849462 X, if 12.537499<x  <31.223493
: ~.1075268 x_,
F +.674059
: ve'R ol x?  _13.537586x if x. > 31.223493
: \ N-2 [ N-2 N-2 N-22
;;3 210. 33327
4
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7,L 2 .
= -13. < .
Vs [xN_Z 13 537586xN_2] if x,_, < 30.975476
= +

& Vo (K o1l ,, -t a0.33827
;3 Vﬁ_z = ,7821909 Xy 2 if Xy > 30.975976
-é That is,
% GN_Z(Z) = =-31.22 = -GN_2(6)
o ON_Z(l) = =30.98 = -GN_2(7)
{ = = ~-12.54 = - = -

n GN_Z(Z) GN_2(3) 12.5¢ ON_z(S) BN 2(6)

- GN_2(3) = -4,.559 = -GN_Z(S)
> By_p(4) = -3.277 = -0y_,(4)
“ Step 4:
" Now we are ready to compare the constrained problem costs, —
i so as to solve
- VN-Z(xN-Z'rN-2=l) = min {VN_z(xN_z,llt)} ' (5.39) |
:".-': t=l, s o 'wN—l=7 I
.
'_::-." as in (5.37).
a In figure 5.20 the values {GN_z(t+l), GN_Z(t): t=1,...,6} are .
1
';g plotted (on the xN_2 axis) and the regions of xN—Z values where each _
'EE candidate cost apolies are indicated. For example, when xN_2 is
A in the interval (@N_3(3),9N_2(4)), the eligible candidates are
o {yhrR 2R G3R AL 5L GBiL GTiLy fote that all of the eligible
y costs over this interval correspond to active hedging to some point.
o
|
o |
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Figure 5.20: Eligible Regions of X2 values for candidate

costs-to-go in example 5.1,
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A "brute force" approach to solving (5.39) would be to compute

all 19 functions of xN_2 shown in figure 5.20, and then to compare

those that are eligible over each of the indicated xN_2 intervals

so as to determine which is optimal.
Fortunately we can avoid many of these calculations and computations

from a consideration of the shape of the conditional expected cost-to-

A

go vN_l(xN_l|rN_2=1) in figure 5.19, and by using facts (5.31)-(5.36)

that were developed in the proof of Proposition 5.1.

. 1,R 2,L .
Consider VN-Z(xN—2'l) and VN-2(xN-2'l) as functions of xN—Z'

Each corresponds to driving xN-l to the value YN_l(l) = -6.750
(from the right or from the left). But the conditional expected

cost-to-go GN =]1) is continuous at YN_l(l) {(and equals

-l(xN-ler-Z

164.5, as shown in figure 5.19). Thus vl'g

N- ,1) equals

(-2

VN—Z(xN-Z'l) as a function gg_xN_z. The same is true for each pair of
functions V;:g' V;té'L that correspond to driving Xg-1 to a point

Y. .(t+l) where V. _(

i i . That i
N-1 N-1 XN_lll) is continuous is,

1,R - 2,L -

VN_Z(xN 2.l) = Vﬁ_z(xN_z,l) (driving X1 to YN_l(l))
Z,R = 3'L s :

VN-Z(xN-Z'l) = VN_2(xN_2,1) (driving Xe1 to YN_l(Z))
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5,R - 6L -

Ve Bgopr 1) = Vo (g o01) (driving x__, to Y1 (5)

6,R - /L o g
VN-z(xN_z.l) = VN_Z(xN_z,l) (driving Xeo1 to YN_l(G)) ;

At a point x .=y where Vﬁ-l(xN-lll) is discontinuous, the 3

cost-to-go that corresponds to driving to the side of x _l=Y where . -1

l\

N l( N- l|l) is less is obviously lower than the cost of driving to

the more expensive side of xN_l=Y. Thus as functions of xN—Z'

4,L 3,R . ) +_ +
Vg2 Byoor ISV Ne Z(xN_Z.l) (best side is to Y13 = -1 5
1
4,R SIL : . - - .1
< - .
VN—Z( 2,1) VN 2( - 2,l) ( best side is to YN_1(4) 1) g

Using the above relationships and (5.31)~(5.36) we can eliminate

NTMY . VY

“r

t
Fowy

1
{Vng' vl 'g' vk, VS'?: Vs’gl V6'§, V7’g} from consideration by

3
N-2 N- N-2 N- N- N- N-

e B

the following steps (each of which is indicated on figure 5.21):
1. As functions of LY

1) = V (xN 2,l)> V2 (x. ,,1) (equality at

N2

.\
4
-
~
P
~
N
"
Ty

X, = Oy ,(2)). Thus

'R

v

Nop cannot be optimal for x G(GN_Z(I),GN_z(z)).

N-2
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1,R

VN-2 cannot be optimal for Xe o > GN_2(2) because
1,R - 2L 2,R
= > .
V-2 Fear D) F Vo g pr 1> Voo (g o e 1)

Z,L s
<
VN—Z cannot be optimal for Xy o GN_2(2) because
v2rL 2 gLR 5 LU
N-2 = 'N-2 N-2 °
v2rR cannot be optimal for x €(d._ _(3),0. _(3))
N-2 N-2 N-2 "7 'VN-2
B 2,R _ _3,L 3,0
= > o
because Vﬁ_z VN—Z Vﬁ_z
Vz'R cannot be optimal for x_ .> ©_ _(3) because
N-2 N-2 N-2
2,R . . 3,L 3,R
= > > .
Vo2 = Vno2 > Voo for X2 GN_2(3)
V3'L cannot be optimal over x < 8. _(2) because
N-2 N-2 N-2
3'L - Z,R IL
= > < .
Vﬁ_z VN-Z VN-2 for X2 SN_Z(Z)
V3'L cannot be optimal for x e, .(2),0. . _(2))
N-2 N-2 N-2 N-2
V3,L = VZ,R > VZ,U .

3,R
V.o cannot be optimal for x. , €O .(3).8 ,(4)
3'R 4'L
> .
because Vﬁ_z V&_z
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3,R .
9. VN—2 cannot be optimal for xN_2 e(BN_2(4),ON_2(4))

3,R 4,L
>
because VN_2 N-2 N-2

3,R o
1o0. V&_z cannot be optimal for X > GN_2(4)

3’R 4IL 4IL 4,R
> > > .
because V ', > V. ', and V2 > Voo for X o ON_2(4)
11. Vs’L cannot be optimal for # <8 (4) because
N~-2 N-2 N-2
S,L 4,R 4,R 4,L .
> .

Vo2 > Yyl and Va2 > Voo for Xy S eN_2(4)

L .
12. v_ 'J cannot be optimal for x (SN_2(4),9N_2(4))

€
N-2

5,L 4,R 4,0
> >
because VN—Z VN—Z VN—Z .

£
1

S’L .
13. V&_z cannot be optimal for X2 G(GN_2(4),9N_2(5))
* ,L 4'R
> .
because Vﬁ_z VN-2
14. V5'R cannot be optimal for €(8 (6),06 (6))
N-2 -2 N2 N2
S'R= 6,1‘ G’U
because VN—Z = Vﬁ_z > VN_2 .
15. Vs'R cannot be optimal for .x > 0. .(6) because
N=-2 N-2 N-2
5R _ .6,L 6,R
Vo2 = Vo2 7 Vne2  FOT Xy, > Gy (6.
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17.

18.

19.

20.

Thus the only constrained costs left in consideration are VN

6'L .
V&_z cannot be optimal for xN_2
6,L . _5,R 5,L
= > <
VN-Z VN_2 VN—Z for x 2

6 .
york cannot be optimal for x

N-2 N-2
6,L _ _.5,R 5,0
= > -
because VN—Z VN-Z VN_2
V6'R cannot be optimal for
N-2 P *N-2
6,R -— 7IL 7’U
= > .
VN-2 = VN-2 7 V-2
V7'L cannot be optimal for
N-2 e oP *n-2
7,L 6,R 6,L
= > <
v&_z Vﬁ_z VN-Z for xN_2 8
V7'L cannot be optimal for x
N-2 P N-2
7II-I - G'R 6,U
= > .
because Vﬁ_z VN-2 v N-2

<8, ,(5) because

€(8,_,(5),0, ,(5))

>0, ,(6)

N-2 because

< eN—Z(G) because

e(d 2(7))

MO

4,L
-2

and

hedging to a point can occur only to

Vglg. For this problem, active
+ +
Kool = Y130 =V, =1
or _ _ _
o1 T Yy (4 = V(2 =1
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We see from figqure 5.21 that

4,0 . ,
L ]
Vg.p Is optimal for BN_2(4)§ X s S GN_2(4)
¢ V4’L is optimal for O _ _(3)< x <9 (4)
N-2 N=-2 — "N-2 — "N-2
° V4' is optimal for Q@ (4)< ¥ <8 (5)
N-2 N-2 — 'N-2 — N-2

P

To complete the minimization of (5.39), we first solve for the

_ , 4,L 3,0
intersections of V ' (x . N-2 ‘¥N-2

they intersect at

xN-Z = =-6.977, -2.1414

< - >
and that for xN_2 6.977 Vﬁ_z VN—Z

U
° Vgiz is optimal for

By (32 %y 5 £-6.977

° V4'L

N=2 is optimal for

-6.977 < x <0 ,(4).

In addition,

4 ¢ L > ’
e v ]
N-2 doesn't interesect VN_ 2

in (8, ,(2),0, ,(2)

(1) and v (% 1), We find that

”r




.........

1,0

L
L 1 :
VN—Z doesn't intersect VN—Z

in (==, 9 _,(1) . >

Thus to complete the determination of VN—2(xN—2'rN-2=1) for

. . . 2IU 1IU
<
Ko < 0, we need only to find the intersections of VN—Z and VN_2 .
These occur at
= =31. , —-7.846
X2 31.18
1,0 2,0
< -31.18 ! .
and for x ., < -31.1 ¢ Voo SV
Thus from figure 5.21 we see that .
4
°vl’Ui optimal for ”
N=2 s optima i
< -31. .
Xgn S 31.18 ;
. VZ’U is optimal for .
N-2 P X
-31.18 < < -12.54 = . g
31.1 < xN—Z-— 12.5 SN_2(3) 3
Y
From the symmetry of this problem we need only consider X2 <0

or Xy 5 > 0 (this is easily verified from the VN_2(xN_2.l|t) computed
above) . Collecting all of the above information we thus have

the following:
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The optimal expected cost-to-go V ( 1) and control

N-2 " N-2'TN-2"

o 8 s

law u ( =1) have

N-2 Fn-27TN-2

PONORUI. S

m (1) =9

pieces, with joining points

8y, (1) = -31.18

$ (2) = -12.54

8 (3) =-6.977

N-2
Syop (4 = -3.277
8y, (8) = 3.277
| el

8y, (6) = 6.977

{ = =N
8y_pt?) = 12.5:4

= . 5.40

8,8 = 3l.18 (5.40)
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1,0 ,
<
Vil2 it xg % SN_Z(l)
vY ie s (< <8 _(2)
N-2 T N-2'"'2 ®Fy-2 2 Opo2
3,0 .
VN_2 if SN_z(Z)f_ Xg-2 < GN_2(3)
Vv (x ' X =1) =
N-2 N—Z N—Z 4'L .
VN-Z if GN_2(3)§ Xg-2 < 6N~2(4)
viU if 5 _(a)<x. . <6 (5
N-2 N-2"""= "N-2 = "N-2
4,R )
VN_2 if GN_2(5)5_ Xg-2 < GN_Z(G)
5,0 .
VN-2 if GN_Z(G)g Xg-2 < GN_2(7)
6,0 .
VN-Z if GN_2(7)_<_ xN__2 < GN_Z(B)
7,0 )
v, if 6, (8)< x
N-2 N-2 N-=2 (5.41)
That is,
Ko p(1:1) = .7821909 = K ,(9:1)
Kg_p(2:1) = .7849462 = K ,(8:1)
_ K, ,(3:1) = .780658 = Ko (7:1)
.
E:::: Kgp(4:1) =1 = K ,(6:1)
Ky, (5:1) = .6948682
A (5.42)
. Hy ,(2:1) = .1075268 = -HN_2(8:1)
HN_2(4:1) = 2 = -HN(G:l)
R. . = . = H = . = H =
9 B ,(1:1) = B (3:1) = B, (5:1) = H_,(7:1) = B ,(9:1) = 0
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Gy, (2:1) = .674059 = G ,(8:1)

Gy, (4:1) = 3.2772727 = G _,(6:1)

Gy_p(1:1) = G ,(3:1) = G (5:1) = G ,(7:1) = G ,(9:1) =0

Ly_p (1:1) = .7821909 Lg_p(9:1)

Lo (2:1) = .7849462 Ly, (8:1)

Lyp(3:1) = .780658 = L (7:1)

Ly ,(4:) = 1 = Ly ,(6:1)

Ly, (5:1) = .6948682

Fy_,(2:1) = -.0537634 = -F_ (8:1)

FN_2(4:1) = -1 = -FN_Z(G:l)

Fuop(L:l) = F o (3:1) = B ,(5:1) = B (7:1) = B (9:1) = 0

The value of the X1 obt 1ed by application of the optimal
control laws is given by
/.2178091 X2 if xN__2_<_ SN_Z(l)
-2150538x,_, -.0537634 if § ,(L)<x, < 6 ,(2)
.219342 x_, if 8 ,(<x, <8 (3
g1 B2 2™ = 1t £ & ,(x, < & ,(4)
.305138 x_, if 8 ,(4xy <8 L (5)
+ 1 if 8 ,(5)%x, <8 ,(6)
.219342 x_, if S, (&)<x, <8 (7
-2150538x,_,+ .0537634 if 8 . (T)<xy ,< 8 ,(8)
.2178091 x _, if 6, ,(8)< %
(5.43)
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( The optimal expected cost-to-go, control law and obtained X1
o values are shown in figures 5.22, 5.23 and 5.24, respectively.
a From the solution of this stage of the example problem we can

make the following observations:

1. As in the last stage solution, the optimal control

law is discontinuous at (and only at) xN_ values

2
ﬁ where VN_Z(xN_Z,rN_2=l) decreases discontinuously; that
is at & (1), §_,(3), 6 ,(5), §_,(8).
ﬁ 2. At time k=N-2 (as at time k=N-1), active hedging
S occurs only to discontinuous points of the form
transition probabilities:
' 63 V==l v (2)=1 . i
3. We see that for this example system: i
. 1
.. m (1)=1 4
- mN-»l(l)‘=5 !
Mo (1)=9
2 That is, as (N-k) increases the number of pieces 1
; is increasing linearly, by §
;g 2* (number of probability pieces, 3i2=2) =4 ?
.; at each time. E
4 Y
|

s ata r_a2 s B . .
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4 — 4 $ -t + -} + .
-31.18-12.54-6.98-3.28 3.28 6.98 12.54 31.18 XN-1
8'~-2(1) 8;‘_23(3) 8l~-2=(5) 8;“-2(7)
SN-2(2)  8p2=(d) 8N-25(6) 8n-22(8)
gt e’
Hedging Hedging
10 xp~g=-t* to xy-g 1"
FIGURE 5.22: Optimal expected cost-to-go from (xN__z,rN_2=l)
in example S.1. (not drawn to scale).
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|
$un-alxy-2it) X
)
N
j2a41s 2
124.388
R
=]
S U 2,u aL ,9U 4R 6, 7U -
N Un-2 Un-2 Utk UND UNBUDE w2 UN-2 B
X optimal optimal optimal optimal A
L‘. °
' $+9.79 ’]
3 16.92
3 5.45
% 123
@ -3118 -12.51-6.98-3.35 3,38 §.9812.54 3148 X
| | 3t | | N-2
Sy-2(!) B\-2(3) | 8)-2(6) 8\-2(8)
|  -5.45+
-6.924
-979¢
4 ) ()
3n-2(2] 8.4 3y-2(5) .
| 8n-2M) %
¥
{-2438 N
T-24.44 -]
Hedging to | Hedging to ,
I -4
XN"- ' XN_1-1 .4
FIGURE 5.23: Optimal control law from (xN 5t rN 2=l) in example 5.1. ﬁl“
(not drawn to scale). X
_IJ
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Axn-1(xn-2.ry-2%1)

-
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Region of
::g;g‘s } avoided
XN-1 values
T2.75
ﬁH.53 Region of
avoided
+4 . Xy values
l ' ' ', ! ' 1
-31.18 -2.54-6.98-3.3 33 §5.981254 3118 .
[ (I . -
320 | B\L26)
Region of : ! T i "
avoided Voo o
Xy-p Values pi .+ =153 |
oo ' )
Hedge ) '
to +-275 |
x = 1" ama
N-1 Hedge
<+ to
-1 =T
Region of | -6.759
avoided :,, - 6:791

XN-1 values

FIGURE 5.24: X

values obtained using the optimal control from

N-1
( (not drawn to scale).

xN_z,rN_2=l) in example 5.1.
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The five phenomena listed above are examined for the general problem
in the next section, and are characterized by Propositions 5.2, 5.3
and Corollary 5.4.

we can make the following additional observations and claims that

There are four regions of xN-l avoidance:

X, € (-6.759,-6.791) x ;€ (1, 1.53)
X, € (-1.53, -1) x,., ¢ (+6.759, 6.791)

As the previous stage these regions of avoidance correspond

values where V ( =1) is not differentiable.

Lo Xy 2 N-2 ‘*N-2'TN-2

That is, to

U8y, 8 (), 8 _,(5), & _ (M}

Note that there is no hedging-to-a-point (from time N-2)

associated with GN_Z(l) and GN_2(7).

In the determination of V ( =1) above, we

N-2 N-2" TN-2

did not have to compute and compare many of the guadratic

functions listed in (5.38).

are addressed in the next chapters:
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From consideration of both stages of this example,
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The boundaries of the left and right endpieces are

much further from zero at time N-2 than at time N-1l:

O

-

A
[}

-6.75

il
1
O
—
[N
~

S (1) = =-31.2

L}
}
O
-
2]
A

This is an example of a general property: except for
pathological problems, the range of X values for
which the optimal controller involves changing the pro-
bability piece that the state will be in (at some time
{k+1, k+2,....N-1,N}) monotonely increases as (N-k)
increases. That is, the endpieces move "further out”
from zero as (N-k) increases.

The size of the middle piece, where active hedging

serves no useful purpose, also grows between k=N-1
and k=N-2, but more slowly than the distance to the
end pieces:
. at time k=N-1l, the middle piece is
(GN_l(Z).GN_1(3) = (-2.75, 2.75)
. at time k=N-2, the middle piece is

(o (4) 8y 5(5) = (-3.3, 3.3) .

This suggests a general property: as (N-k) increases,

the sizes of the middle pieces converge monotonely

(increasing or decreasing) to steady-state values.
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8. Note that the curves

are very close together (see (5.41)); in fact, they

are so close that figure 5.22 could not be drawn to

scale and still show the behavior of VN—Z(xN—Z’rN—z

=l)

at its joining points. This suggests that even

though the number of pieces mk(j) of Vk(xk'rk=j)
increases as (N-k) increases, many of them may be
"almost the same.” This phenomena is the basis of a
"finite look-ahead" approximation to the optimal steady-
state (infinite time horizon) solution of the general
problem, which is developed in chapter 7.

Setting aside for now the steady-state phenomena (6)-
(8) above, we proceed to clarify the combinatoric pro- )

perties (1)-(5), in the following section.

5.6 Some Combinatoric and Qualitative Issues

In this section we examine several combinatoric and qualitative *
issues related to the (off-line) determination of the optimal control 1
laws and costs of Proposition 5.1. Aspects of the problem that are

addressed here include: i

., 199
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. the nature of active hedging; examining what -
values of x an optimal controller will hedge
to and why, and what values of x will be avoided
and why,
. determining how many of the candidate costs
(and control laws) in (5.38) must actually
be computed and compared,
. characterizing the number of pieces, mk(j)
of the optimal expected cost Vk(xk,r

k=)

and control law uk(xk,rk=j).

The topics studied here are useful in the specification of an
efficient way to carry out the algorithm steps that are indicated

in the proof of Proposition S5.1.

A "brute force”" way of determining Vk(xk,rk=j) in (5.37) is

to compute and compare all of the

i 2a
W, -2 1+3|\~J ({v

(t):t=1,...,3..-1}U{6j
iee, It

k+1(t):t=1,...,mk+l(i)-l}|

ji
(5.44)

candidate quadratic cost functions listed in (5.38) (the right hand side

of (5.44) follows from (5.23)). Thus

lAs done in example 5.2.
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M

i o_ )
Wem2 21 +3 izl[vji t o) 2] (5.45)

where equality in (5.45) corresponds to the "worst case"
]cj] =M  all forms are accessible to each
other in one step -

and all the Vji(l) Z=l,...,vji-l

6i+l(t) t=l,...,mk+l(i)-l i=1l,...,M
values are different.
This suggests that the number of pieces, mk(j), of each
Vk[xk,rk=j] might be growing geometrically (with powers of 3) as
N-k increases. Fortunately, this is not the case, as suggested in
the previous section. The underlying reason that many of the
candidate costs in (5.38) can be discarded is the nonincreasing-slope
condition (3) of Proposition 5.1. In particular, the optimal controller
only actively hedges to x values that are discontinuous points of form
transition probabilities (ie, to V's). There is no active hedging
to joining points of the (next-stage forward) expected costs (ie, to
§'s) precisely because the slope of these costs is nonincreasing at
such points.
These facts will be established as we pursue the following:
(1) first we show that many of the candidate costs
in (5.38) cannot be optimal (for any X, value)

and hence they need not be computed (Proposition 5.2),

. TR | DI} W
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(2) Next we show that each candidate cost in
(5.38) can be optimal over, at most, a
single interval of xk values. This bounds
the number of pieces mk(j) of Vk(xk,rk=j).

(Proposition 5.3 and Corollary 5.4).

The following proposition relates values of x that are hedged

k+l1
A
, , s i _ (r. =4),
to with discontinuities of the expected cost-to-go Vk+l(xk+1lrk 3)
and it eliminates many of the candidate costs in (5.38) from

consideration.

Proposition 5.2

The optimal control law uk(xk,rk=j) can only hedge to points

that are discontinuities of the conditional expected cost-to-go

A

Vk+l(xk+l;rk=j). That is

hedging ® is a discontinuocus point

to some N of form transition probability

point x from p(j,i;x)

ot L

(xk,rk-J) for some i € cj
Only

3 3 =

= + H T lse e ey .-1 .
i1 = Vil U {\)ji(l) =1 Vi } (5.46)
zecj

of the candidate costs listed in (5.38) must actually be computed

and compared in (5.37) so as to determine Vk(xk'rk=j)'
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These costs are:

(i)  for each x . region Ai+l(t), e=1,...,9’

k+1’
» . " t,0 .
the "unconstrained” cost Vk (xk,J)

(ii) for each form transition probability discontinuity

v.,(2) (for ie€c., %=1,...,vV..-1), which is denoted
Ji ] J1

-1}, we must

by Yi+l(t) for some t€{l,...,wi+l

consider

e the "left constrained" cost V;+1'L(xk,j)

aaadl A ainiaa

if
PN j -..>A J +._
Vel (D (O 12V, Uy (8] 9)
. . t,R . -
e the "right constrained" cost Vk (xk,J). .

is |

o8 3 - .
©1753)> ¥ () @179, O

5 b
Vi1 ey

This proposition is proved in Appendix C.3. The proof follows from

lLA‘._P"‘

certain relationships between the relative values of Gi(t) and

3
@k(t).

From Proposition 5.2 we know that the mapping

"“..Illl'

xk — xk+l (xk,rksj) ]
need not be one-to-one, in that hedging to points may occur.

The following proposition lists a number of general gqualitative ﬂ

L
2
o
P
%
N

properties of the optimal controller that are suggested by example 5.1.

In particular, it characterizes the behavior of the xk-—-xk+l(xk,rk=j)

TR

mapping.

W

L .« "
1
>
o
G
PR
:

.
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i‘ Proposition 5.3:
%f The optimal controller of Proposition 5.1 has the following
-

properties:

(1) At each time k and in each form j€M,between joining

points {Gi(t): t=1,...,m (3)-1} of Vv, (x ¥, =3):

-b (3) Wy Xy 7y =)

2 W (x ,r =5)
U “al &) K k' “k
Kep1 Fer 7™ = a)x = SR try (5.48)

(here a(j)R(3)#0, b(j)#0).

(2) At those joining points § where the slope of Vk(xk'rk=j)
BVk(xk,rk=j)I
9%y

exists | ,

does not change |(ie,

xk=6
uk(xk,rk=j) and xk+l(xk,rk=3) are continuous

functions of xk.

(3) At those joining points Si(t) where the slope gg_Vk(xk:rk=j)
decreases discontinuously

BVk (xk ' rk=j )

9%

ka(xk,rk=j)

<

ie
axk

xk=6+ xk=6-

(i) uk(xk,rk=i) increases discontinuously at §

when b(j) >0 {and decreases discontinuously

- a(3)
E? at 8§ when b(j) < O)
L'_: a.(J)
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(ii) the mapping X k—-xk+l(xk,rk=j) increases

discontinuously at § when a(j) > 0) (and decreases
discontinuously at § when a(j)< 0},

(4) The mapping

o T B e E=D)

has the following properties:

(1) the mapping is monotonely nondecreasing if

a(j) >0 (and monotonely nonincreasing if

a(j)< 0) for each jeM
(ii) it consists of mk(j) line segments:

. one line segment with positive slope if
a{j)> 0 (negative slope if a(j)< 0) for

each X region where an "unconstrained cost"

t,u _ . .
Vi (xk,rk—l) is optimal
_iy _ ot/U - j
Vk(xklrk—]) = Vk (:ﬁ‘lrk J) te{l'...’lpk'f'l}

k+l

b2 ()80 _ (¢)
IES

. = [ a(IR()
L Lroe? @&, @

(5.49)

. a constant line segment for each X region

where there is active hedging-to-a-point:

= I i
Kerl = Va1 (8 tell,. .o by mt)

2[R(G)+2 R (0]
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(iii) there are regions of xk+l avoidance associated
with (and only with) each xk=6 value where

the slope of Vk(xk.rk=j) decreases discontinuously.

(5) Each candidate linear control law (associated with the costs
listed in {5.38)) can be optimal over, at most, a single

interval of xk values.
c

The proof of this appears in Appendix C.4, and it will be verified
at the end of this section for example 5.1.

Proposition 5.2 restricts the number of candidate costs that
must be considered in (5.37), and fact (5) of Proposition 5.3 says
that each candidate can be optimal over at most one X interval.

Thus we immediately have :

Corollary 5.4:

The number of pieces of the optimal expected costs-to-go

(x ,rk=j) and their associated control laws are bounded above by
m (3) < ;k+1 “’k+1 ‘U oy (0s =1,.000vy-2H (5.50)

A weaker bound which follows from (5.24) is

\J ONOE 2,=1,...,vji-l}.

iec,
j

: |
m (LG, S+ Z (n5<+1(1) 1)+ 2
(5.51)

D
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Note that in (5.50) the factor of 3 in (5.45) is eliminated.
Corollary 5.4 says that the number of pieces in each optimal

expected cost Vk(xk'rk=j)' grows

. at most linearly with the number of transition

probability pieces
. at most geometrically with the number of elements
of cj; that is, the number of forms accessible from

j in one time step.

Suppose that the piecewise-constant form transition probabilities

in (5.3) are approximations of the true probabilities. From (5.50)-

(5.51) we see that there is a tradeoff between

. the accuracy of p(j,i:x) approximations (in terms
of the number of pieces Gsi that are used)
versus
. the complexity of
. the algorithm computations
(in terms of ;i+l)

and

. the resulting controller
' (in terms of the number of Vk(xk,rk=3)
and uk(xk,rk=3) pieces, mk(J)).
We conclude this section by applying the Propositions and Corollaries

developed here to example 5.1.

(P bad U & S

¥ ¢
-
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h’ Example 5.1, continued:

We have already seen that hedging-to-a-point from (x 1)

N-1'"n-17

= and from (xN_Z,rN_2=l) is only to the discontinuities of the form
i transition probabilities V ,(l)==land v ,(2)=+l (see (5.19) and
! (5.43)).

o Since for this example
;! IK.) {vl.(z): 2=1,2}| =2,
; ) i
. iec

and wNa3 ’ wN— l=7 R

the number of candidate costs that actually had to be
computed and compared (according to (5.46) of Proposition

5.2) was

¥

From the shapes of Gﬁ(xNIrN_l=l) (figure 5.12) and V_ _( =1)

w-1 %172
(figure 5.19), Proposition 5.2 specifies that these candidates are:

1,0 _2,L _2,U
for Yelrr Vnor YL
Vo By 1 Ty ™1 2R 3,0 (5.52)
N-1" "N-1
for
1,Uu 2,0 _3,U
v (x _,r. =1):\ 'N-2' "N-2' VN-2
N-2'"N-2'"N-2 (5.53)
V4'U VS’U V6'U '
N-2' 'N-2' 'N-2 '
7,0 .4,R _4,L :
VN-2' VN—Z' VN—Z
208

¥ L A - - . . [ RN . . N -
- P VORI Y VT S SOuy S VP S o g P T L Ty SRy R g P I, O T P




G AL AN A A P o e st M g N i S B DR PN e uC Hn vtk PRI R St PR el A e s Sk A S

1,U | ] | I
W L o |
2,L | 2,L 2,u 2,R | 2,
VN-1 l YN-1 : YN-1 : Y- N
I | 3.u
RS %{ : %{ ‘ %l VN-1
! | |
I | | I
| . 1 1 »
-4.25 -2.75 2.75 4.25 XN-1
1 1
8y, (1 8Y-1(2) 8y ,(2) 8Y_,(3)

FIGURE 5.25: Eligible costs for V ( =1l) in example 5.1.

N-1'%N-1""N-1

The x's in the figure indicate candidate costs that are
eliminated from consideration in (5.37) by Proposition 5.2.
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Thus we see that we did not have to compute Vﬁii and Vzli

in Section 5.3. The application of Proposition 5.2 for VN ( =1)

-1 -1 Tn-1
is shown pictorially in figure 5.25. The candidate costs listed in
(5.53) are precisely those that we found we had to compute in section
5.5. We have already shown! that Proposition 3.2, 3.3 and Corollary 3.4
hold for this problem at k=N-1, k=N-2. Note that the bound (5.50)
in Corollary 5.4 holds with equality, and

mN-k(l)S 1+ 4k

follows directly.

5.7 Summary

In this chapter we have considered a class of nonlinear stochastic

s

JLQ control problems and have developed a procedure for their solution.
The basic idea of this solution procedure is simple and the solution form
is conceptually straightforward (although the notation required becomes
quite complex).

We have identified some basic properties of the problem that
reduce the combinatorics inwvolved in the solution procedure. These
facts (and others to be developed) will be exploited in the construction

of an efficient solution algorithm in chapter 7.

1In the previous section.
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We have also identified some basic qualitative properties of

the optimal controller. These include hedging-to-a-point, regions

of avoidances, and endpieces and middlepieces of the expected costs-

to-go and control laws.

From analysis of the optimal controllers developed here we
can gain insight into the structure and nature of controllers that
use active hedging. In chapters 6 and 7 we will continue our exami-
nation of the qualitative properties of these controllers. 1In parti-
cular, the steady-state behavior of the infinite time horizon problem

is examined.

PRSI SIS R we |

i
d
3
Ll
i
\
1
:
1
1
]
!




[
&
> 6. QUALITATIVE PROPERTIES OF THE SCALAR x-DEPENDENT JLQ CONTROLLER
m 6.1 Introduction
:% In this chapter we consider certain qualitative properties of the
Fi optimal JLQ controller of chapter 5, as the number of stages (N-k)
.l from the terminal time increases. We will restrict our attention to
ﬁ; JLQ problems like those of chapter 5, but for simplicity we make the
}: additional assumptions that
3 (1) P() =G (3)=0 (6.1)
(2) s(j) = HT(j)=O (6.2)
> (3)  a(§)> 0 (6.3)
5 (4) Q(3)> 0 (6.4)
for all j € M.
We begin in sections 6.2 and 6.3 by examining the behavior of the ~

optimal control laws and expected costs~to-go when x is far from zero
("endpieces") and when x is near zero ("middlepieces"). Over these
regions of x values, Vk(xk,rk=j) can be computed from sets of recursive
difference equations without carrying out all of the steps of section 5.4.
The equations specifying these endpieces and middlepieces of the optimal
controller are the same as those that solve certain corresponding

x-independent JLQ problems (as in chapter 3).

In section 6.4 we obtain upper and lower bounds on the costs
Vk(xk,rk=j) when X is between these endpiece and middlepiece regions.

When the system is stabilizable in each form j € M, the difference equations

212




describing these bounds converge to steady-state values. These bounds
can themselves be bounded by certain x-independent JLQ problems (of
chapter 3). From this fact we obtain sufficient (but not necessary)
conditions for the upper and lower bounds on Vk(xk,rk=j) to converge to
steady-state values when not all of the forms have stabilizable dynamics.
In sections 6.5 and 6.6 we illustrate certain fundamental qual-
itative properties of the optimal JLQ controller. We do this by exploring
a particular class of problems in greater detail. Specifically we examine

the parametric dependence of

* hedging regions: these are intervals of x values from

which the optimal controller hedges to a point;
specifically, the best strategy from such an x is to
use the control to drive the system into a different

piece of the form transition probabilities.

* regions of avoidance: these are x values that the

optimal controller keeps the system away from.

« the stability properties of the closed loop optimally

controlled system over different pieces (of x values).

the existence of local minima in the expected costs-

to-go.
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t. In chapter 7 we will present a solution algorithm that uses the results
~.. of this chapter and chapter 5 t‘c;eliminate many of the computations

specified by the section 5.4 solution procedure. We will also use the
i problem class discussed in sections 6.5-6.6 as a vehicle for exploring

additional qualitative properties of the controller.

;_‘ 6.2 Endpieces of the JLQ Optimal Controller

1 ,
In this section we study the endpieces™ of Vk(ﬁ(,rkﬂ.) and

F uk(xk'rk=j):

o . . j

E.;-: vff(xk,J). @Ax 3 for x < &)(D) (6.5)

&2

< . Re : 3 oy

u Fox 3, welx,3)  for x> 8)(m (§)-1) (6.6) .
- (for each jeM).

The basic results of this section are as follows:

(1) for finite time horizon problems, if xk is negative

-

enough or positive enough the optimal strategy is to

L keep x in the same extreme x-pieces of the form transi-

- tion procbabilities p(j,i:x) for all ie i (from each T
j € M) for all future times.
: That is, the controls ﬁ

Ber B st

l'Le' denotes "left endpiece" and 'Re' denotes "right endpiece."

abacteatuch il chmieafuobundncd

4
p
p
4
4
e
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keep Kpplse - o Xy in the same extreme (i.e., far from zero) piece of the

ey
,

form transition probability. 1

0~ ¥

oy For these extreme Xy values the x-dependent JLQ control problem of |
chapter 5 reduces to an x-independent one. The optimal expected costs-

]
to-go and control laws (in each j € M) for these endpieces can be computed *

off-line via a set of M coupled recursive difference equations (one set
“3 for the left endpieces and one for the right endpieces). Thus the end-

i. piece functions can be computed without following all of the steps of

TR -

section 5.4.

- (2) For infinite time-horizon problems, as (N-k)=® these

;f endpieces of the costs-to-go and control laws converge

;ﬂ to steady-state (constant parameter) functions of x if

. ‘[} the dynamics in each form are stabilizable (i.e.,

,i b(j) #0 or la(3) |[<1). 1
g {
& (3) In general the range of Xy values between these endpieces i

becomes infinite as (N-k)-w. The width of Xy between

the endpieces of Vk(xk’rk = j) remains finite if, once K
> the system is in form j, it cannot be in any1 form having :
x-dependent form transition (exit) probabilities for 1

more than one time step.

Pact (2) is well known from the LQ case. Facts (l) and (3) are proved

in Proposition 6.1 and Proposition 6.3 respectively.

1 Includ .rg (possibly) j itself.
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The following proposition lists the equations for the left and
right endpieces. It is stated for the general JLQ controller of
Proposition 5.1 (with P(3), GT(j), s(3j), HT(j) not necessarily zero).

However to simplify notation we assume that

a(j)> o jeM (6.7)

and we will exclude problems where the system "just coasts" in some

form j with uk(xk,rk)EO by requiring

Q(3) s(j)/2 KT(j) HT(j)/Z
+ >0 . (6.8)

S(3)/2 P(j) AHT(j)/2 GT(j)
vieM

Proposition 6.1 (Endpieces)

Consider the JLQ problem of Proposition 5.1, where (6.7)-(6.8)

hold.

(1) For x < Gi(l), the optimal control laws and

expected costs-to-go are

vk(xk'rk=j) = Vi'U(xkrj)

Evieix .5 = RS G) + x BTG + 650G (6.9)
w G or =9 = w Pk ,3)

4 uk“e(xk,j) = -L]i‘e(j)xk + F)I:e(j) (6.10)
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(2) For X, > Gi(mk(j)-l), the optimal expected costs-

to-go and control laws are

lpj IU
. k+1 .
V'k(xk.rk j) = vk (xk,J)

A _Re o w2 Re Re, . Re .
=V (xer) kak (3) + x H (3) + 6. ()
jou
o Y+l .
uk(xk,rk=3) = u (xk.J)

R x ,3) = LR (x * FRS(3)

(3) The parameters in (6.9)-(6.12) are computed recursively,
backwards in time from N by

a2 HrHES, ()

R(j)+b2(j)f{f_l(j)

RPN PN
Le a(iREGIH ()
k

(3) *
R(3)+b° (1)Ko, ()

N 2
b%(3) 122 (3)]

4[R(j)+b2(j)ﬁ§fl(j)l

a2 (3) = &f;il(j) -

where

ﬁiil(j> = ,25 Aji(l)[K;il(i)+Q(i)]
1€Qj

217

(6.

(6.

(6.

(6.

(6.

(6.

11)

12)

13)

14)

15)

16)

——r—

v
A e e M MR ettt A AR e o f woa’ m om BN 4 a8 A A s A




.....................

ALe _ z
k+l(3) = )\ (l) [H (1)+S(:L)] (6.17)
i€e,
3
~Lle ., _ z Le . :
Gk+l(3) =, Kji(l) [Gk+l(1)+P(1.)] (6.18)
iec.
3
and
2,, .. Re .
Re | a (])R(J)lﬁﬁ_l(J)
K, (3) = ST (6.19)
R(3)+p° (K5, (3)
. ..ARe .
Re a(J)R(J)Hk+l(j)
H (3) = s (6.20)
R(3) +b (j)l{](+l(j)
2,.. .ARe ,.. .2
te  ame . PTONAS ()]
Gk (j) = Gk+l(3) - RS (6.21)
4[R(j)+b (j)lﬁﬁ_l(j)] P
where
“Re(')-zx(v IS (1)40(0)] (6.22)
Ker1 3 = Kk+1 1) :
i€ec.
b
RS (3) = Z Ay (O, IS (1) +8(4)] (6.23)
iee, It 3
aRe
G py () = z A (v k+l(1)+p(1)] (6.24)
lec




with terminal conditions

R (9) = KETG) = K, (3) (6. 25)

i

Le,, Re _ .
Hy (3) = H (j) = HT(J) (6.26) :
Le,.., _ Re .. _ . :
Gy (3) = Gy (3) = GT(J) . (6.27) ]
|
The control law gains are )
. . oLe . *
Le . a(J)b(J)Iﬁ{_'_l(]) 1
Le () = s (6.28) ]
R(j)+b (j)l<k+l(j) q
L Ale . ]
Le . -b(J)bLk+l(J) :
Fk (3) = > ie (6.29) ;
2[R(3)+b (j)Kk+l(j” !
. ..pRe . h
1o - 2B, () (6.30) ]
. 2,..aRe 4
R(3)+b" (3IK ., (3) q

. /ARe .
Re .. -b(H (D) .
F (3) = RN (6.31) 1
2[R(3)+b7 (3K, ()] o |
:
Proof (sketch): Recall that each form transition probability p(j,i) :

is piecewise~-constant in x with vji pieces:
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X €(vji(i-l), vji(i))

i=l,...,v..-1
Jj1

where V.. (0)é -, V,.(V..,)= +»,
ji ji ji

It is clear that for xk negative enough we will have

< i,3 .
Xl vji(l) Vi,jeM (6.32)

and for xk positive enough we will have

> - - ] . .
X vji(vji 1) vi,jeM (6.33)

for %=1,..,N~k (here N<=®). This-.is verified in Appendix C.5. Thus
Proposition 6.1 is just a restatement of the x-independent JIQ solution

{Prop. 3.1), where we make the identifications

for left

endpieces: pji = Aji(l)
for right - Y
endpieces: pji Aji(vji :

vi,jeM

Recall that the optimal expected cost-to-go Vk(xk'rk=j) has mk(j)
. - . J1y< g3 j oy

pieces, with joining points Sk(l) Gk(2)<...< Gk(mk(J) 1).

For X < Gi(l) and % > Si(mk(j)-l), the form transition proba-

bilities will not change from time k+l1 until time N, (ie,we will stay

in an extreme piece of each p(j,i:x)) because the optimal
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( controller will not drive x past vli(l) or vli(cki-l)' respectively
- (for any i, L accessible from j) at any future time.

> Between Gi(l) and Gi(mk(j)-l), the optimal controller will drive

1

%X into a different probability piece at some time k+2,...,N. We define

the switching region Si of the controller from rk=j to be these X )

values g

; X
3 Q . 83 < < j i)~ :

S, {’ﬁ.-; 8 (V< x < & (m (3) n}, (6.34) .-

as shown in figure 6.1. ;

g As we will see, the behavior of the optimal controller and correspon- ]
s ding state trajectories stating from xn € S; can involve one of 5

; "5 several phenomena. Specifically, fex xk values close to zero the optimal

controller will keep future x's in the same probability piece as it

kiR b

a drives to zero, No active hedging is involved in these "middle pieces"

3 PR

on either side of zero, as we will see in the next section. Outside of
this region (but in Gi) the state will switch probability regions. However
this can occur in distinctly different ways (involving hedding to points,

regions of avoidance and other types of behavior). We will characterize

e
Y SRR

% these types of controller behaviors later in this chapter.
5 Clearly for finite times (N-k)< =, the switching region Si has S
i finite width, for each j € M: i
. 3
2 )] = m -n-gfwce . (6.35) '-3
3
-

lprom the piece that xp4; is in.
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Note that we have not yet characterized the values of Gi(l) and

3 @ (4)-
dk(mk(J) 1).
Now consider the infinite time version of the problem, where we
wish to minimize
N-1
. 2 2
+
(kam)—m : kzk e i) e
0 0
subject to (5.1)-(5.4) and (5.6).

2
Q(rk+l)]+ xNKT(rN) (6.36)

We consider the existence of the limiting functions

Ve ix,9) & 1im v (x =x,r =9)
® (o) K BTy

Re Re
V. (x,3) = 1lim V., (x =x,r =3) .
oo (N—k ) -»0 K xk k

Since the endpiece costs-to-go are obtained in Proposition 6.1 by
equations which correspond to x-independent JLQ problems, Proposition
3.2 gives necessary and sufficient conditions for there to exist
steady~-state endpieces to the expected costs~to~go and control laws
in Proposition 6.1, as (N-k) grows large. We have directly the

following:

Proposition 6.2: Consider the JLQ problem of Proposition 5.1 where

(6.1)~(6.4) hold. Then if we take

Pji = )‘Jl(l) vi,jeM,

B
"
bl MEPARE Rt Bp P A s . oA .S ut EER AN R

;
]
A
y
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E then conditions (1)-(3) of Proposition 3.2 are necessary and sufficient
;t for the solution of the coupled difference equations (6.13)-(6.18),
(6.25)-(6.27) to converge to a unique constant set of nonnegative steady-
!l state values {Kie(j)z_o, j € M} as (N-k)*®, given by the M coupled

algebraic equations

2R 1T SEY (K% (1) +Q(1) 1)

4 Le iee,

. K, (3) = 5 = (6.37)
RGBT L [ AL (D) KT+ 1]

- iec, 3

5 J

Ei for j € M, with the optimal steady-state left endpieces

»

(- Le . 2_Le,

5 vV, (x,3) = xK_~(3) . (6.38)

The steady-state left endpiece control laws are
Le , Le . .
u, (x,3) = -L_ (H)x jeM (6.39)

where the time invariant gains are given by

le, . Le . b (]
12 (3) = k(9 Tj)(%)G'T : (6. 40)

e

Similarly, if we take

p ) for all i,j € M,

g1 = A0y

[ .ﬁt‘." ‘-.sr.fr‘ .-. '.*—-E. '-.'. - }7‘

DO

IR I

R AL A A S e

IR
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then conditions (1)-(3) of Proposition 3.2 are necessary and sufficient
for the solution of (6.19)-(6.27) to converge to a set of unique finite
constant nonnegative steady-state values {xie(j)z_o, jeM} as (N-k)+

given by the M coupled algebraic equations

S ORO LT Ay G K (D))

Re . iec’j *
K, () = ) 7 — KRe ) ) (6.41)
R(PD+DUDL T A, (V) IK T (1)+)]]
i€e, I+ It
J
for j € M, with the optimal steady-state right endpieces
e (x,9) = xRS (3) (6.42)
u:e(x.j) = -Lﬁe(j)x (6.43)
where
Re ., _ _Re . b(J)
L_~(3) ¥ 3 75RG) a (6.44)

Since we are considering a scalar x problem, if the dynamics in
each form are stabilizable then the expected costs-to-go (from each
form) will remain finite as (N-k)-®, Stabilizability is trivial to
check for scalar systems: b(j)#0 or |a(j)|<l is required, for each

jeM. If any absorbing form j (ie., pjj=l) is not stabilizable then
the expected costs-to-go becomes infinite for all forms from which

j is accessible.
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If any nonabsorbing form j (ie., ij<l) is not stabilizable
then the existence of steady-state endpieces (and costs-to-go) depends
upon the dynamics of, and transition probabilities to, all forms ac-
cessible from j. The existence of unstabilizable nonabsorbing forms is
not out of the realm of possibility in failure prone systems. For
example such a form might represent the temporary loss of an actuator
until it is repaired. The existence of finite steady-state endpieces for
systems having these forms is characterized by the necessary and sufficient
conditions of Proposition 3.2, which reduce to the following:

There exist constants Fi for all ieM such that:

(1) For each closed communicating class cj {(having two or more

members), there exists a set of finite, positive scalars

{Zl,....zlc [} satisfying the coupled equations
3

L r + F.R
3 el 2 .
z, = (-p,;) [ bL; (a,-b,F.) oo
t=1 +
P.
) 1-;2 2}
rec, *Pii
I

for all iecj.
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(2) There existsa set of finite positive scalars {Gl,...,GT}

satisfying the coupled equations 3

2
] +F R
- 2t / 9¥F R
Gi = (l—pii) Z Pzil(ai-biFi)' o
t=1 +

- ks

) Pit
ger 1Pi; *
I

N WO

(for all i € TC M; T is the subset of transient forms in M).

(3) all absorbing forms are stabilizable.

The reason that these conditions are so complex is that the controller

Ry

DA
Sefe LA
S

must account for an extremely wide range of possible behaviors. For
‘I} example, it is not enough that the system will eventually enter a sta-

bilizable state with probability one, as we will see in example 6.2.

bebitacllil Kooon

When the only unstabilizable forms are transient forms(i € g)that are

not accessible from any form in their covers i € cj except themselves

bl e

(that is, once we leave i we can't return), then corollary 3.4 yields
a sufficient condition for the existence of steady-state endpiece cost

functions that is easier to test than (1)-(2) above:

2 .
- < . “
N Py <1

atucbadodedoc iR o o o

..........
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Let us now consider the growth of the .switching regions
Iy o &3 1y - &
lskl §.(m (3)-1) = & (1) (6.45)

as (N-k) grows large. If this quantity were to converge to a finite
value as (N-k)* it would mean that for X negative enough (or
positive enough), the optimal controller does not make use of the

knowledge that the p(j,i) can be changed by active hedging. This

situation will obviously arise if none of the form transitions that
the system can make once it is in j are x-dependent (since active
hedging will be of no use). Finite switching regions also arise when
the system cannot be susceptible to any x-dependent p(i,) more

than once, after it has entered j. In general however, the switching

regions grow in width without bound as (N-k)=® . .

Proposition 6.3 (Growth of Switching Regions)

Consider the JLQ problem of Proposition 5.1. For each form j:

(i) If, once the system is in form r, = j , all of the

form transitions that t’'.e system can make are

x-independent then Vk(xk,rk = j) has one piece

mk(j) =1 all k




(ii)

(iii)

If, once the system is in form rk = j, all

of the form transitions that the system can
make are x-independent except for (at least) one
that has a single transition probability dis-
continuity at x = 0, then Vk(xk'rk = i)

has two pieces

[
N

mk(j)

with

|
@]

Gk(j) (joined at zero)

and
el = o

as (N=-k)=x= ,

Assume that each form has stabilizable dynamics.

If, for r., = j, the system cannot (from time k+1l

k
to N) be in any form having x-dependent exit pro-

babilities for more than one time step then

|Si| will remain finite as (N-k)+e .

Note that the system must have p(j,3) = 0 4if p(j, iy is

x-dependent for any i € C%.

If one or more of the form accessible from j is not

stabilizable then !3§[+m as (N=k)-» .

- - ~
T U Y U S T A T T e O T T L TN Y e T T Y ..n..J




CANOR ) ™
PN
.

)

(iv) if for r = J it is passible to repeat an
x-dependent from transition (from j or from any i
accessible form j, including possibly p(3,3))
with transition probability discontinuities

not all at zero, then [Si[*w as (N-k)-w .

Proof: (Sketch) :

Parts (i) and (ii) are obvious. PFor part (iii), since there
are only finitely many forms then after a finite number of times ‘
(say m the system will have entered a stabilizable form i that
satisfies part (i) or part (ii). Thus as (N-k)=2», since
}Si] = 0 we have }Si_;[ finite. For parts (iii) and (iv), if
one or more of the forms accessible from Jj is not stabilizable
then }Si|+m since the expected cost-to-go in this form becomes

infinite as (N=k)-=w .

In (iv) if all of the forms are stabilizable then the ability
to repeat an x-dependent transition makes ]Si[ grow without bound.
The basic idea is as follows: Since each form Jj is stabilizable
we have by Proposition 6.2 that the steady-state endpieces

exist. The closed~loop optimal gain in the left endpiece becomes

arbitrarily close to:




AN

3
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o 2, .
<a(j, i) Kg;e(j,>

"a(IR(I)
(6.46)
1
= a(j) )
1+—2° ) Le (6.47)

R(3) i

as (N-k)?* . This limiting value of the closed loop optimal gain must
be stable if the steady-state endpiece cost functions of Proposition

6.2 are to be finite. That is, we must have

2 .

. b (§) ‘Le. .
a(§) <1+ =—dL x4
R(3) @ (6.48)

In appendix C.6 we show that the condition in (iv) and (6.48) make

]S}J;l-m as (N-k)»» .

The steady-state endpiece functions Vie(x,j) and Vie(x,j) are
useful in describing the asymptotic behavior of the optimal JLQ controller
even though the switching region between the endpieces becomes ar-
bitrarily large (in general) as (N-k)+®. In particular, they are useful
in "finite-look ahead" approximations of the steady-state controller

which will be discussed in Chapter 7.
This completes on discussion the endpieces of Vk(xk.rk=1) and

uk(xk,rk=j). Several examples will be presented at the end of the

next section of this chapter.
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6.3 Middlepieces of the JLQ Optimal Controller

In this section we consider the behavior of the optimal JLQ con-

troller of Proposition 5.1 near the origin, when the x-costs are

simple quadratics (i.e., when (6.1)~(6.4) hold). That is, we examine

. . 1 . . .
here the middle pieces of Vk(xk,rk=j) and uk(xk,rk j) for each j € M:

LM .
Vk (ﬁ‘r]) 3
for &7 < xk < 0 (6.50)
M kT kT
uk (xk,j)
ViM()S{'J) .
RM for x 0 <X <§ (6.51)
where
53 8 max {63 (2)< 0} (6.52)
“k k :
3'}3; & min {Gi(z» 0} (6.53)
where £=0,l,...,mk(j).

As we will see, if there are no form transition probability

discontinuities at zero

vji(t)alo t=1,...,3ji-1 for i,j €M

l'I‘he superscript "LM" and "RM" denote "left middlepiece" and "right
middlepiece, respectively.
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then the left and right middle pieces in Proposition 6.6 are given by

the same equations. That is, there is a single middlepiece valid in

given by
RM sy = LM
\'4 = 4
X (xk,J)- Vk (xk.J)

at each time k and in each form j. The basic results of this section

are as follows:

(1) for finite time horizon problems, if X is close
enough to zero the optimal controller keeps Rgpreoeo
*y in the same close-to-zero pieces of the transition
probabilities p (j,i:x) (and x is driven to zero).

The controls

et -l

do not actively hedge (i.e., don't change form

probability pieces)from the close-to-zerc piece that xp .,
is in)because there is no advantage in doing so. The best

strategy for these x close to zero is just to go to zero.

As with the endpieces, the middlepieces correspohd

to x-independent JLQcontrol problems. The middle

pieces of Vi (x ,r.=3) and up (%, ,r,=j) can be computed
k¥ 1Ty k Skt

via sets of M coupled recursive difference equations.
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(2) For infinite time-horizon problems, as (N-k)-=x
these middlepieces converge to steady-state
{(constant parameter) functions of x if the

dynamics are stabilizable.

(3) At all times, the widths of the middlepieces are
finite (except when a middlepiece and endpiece
are the same at all times for some form j, because
there are no form transition probability disconti-
nuities on one side of zero for any form ac-

cessible from j).

The above results are obtained in Propositions 6.4, 6.6 and 6.5, res-

pectively. We first have the following:

Proposition 6.4: (Middlepieces)

Consider the JILQ problem of Proposition 5.1, where (6.1)-(6.4)

hold.

(1) For §i < X < 0 the optimal expected costs-to-go

and control laws are

v, (x T =1) = v;‘“(zs‘.j)

&2 (6.54)

Wi, 9)

-Li'M(j)xk (6.55)

9y (%07, =3)

ne>
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(2) For O f_xk 5_32 the optimal expected costs-to-go

and control laws are

v, (% ¥ =3) = Vfd(xk,j)

4 xixim(j) ' (6.56)
5 mI) = )
4 _Lim(j)xk (6.57)

(3) The parameters in (6.54)~-(6.57) are computed recursively,
backwards in time from N by (6.13)-(6.31) where, for each
i,j € M we make the substitutions
LM replaces Le
Aji(i) is replaced by lji(LM), the value of
p(j,i,x) valid for =x €(max{vji<0},0)
RM replaces Re
X'i(ssi) is replaced by Aji(RM), the value of

3
p(j,i,x) valid for x €(0, min{vji>0})-

Proof (sketch):

This proposition is a restatement of Proposition 3.1, where

for left P.. = A,, valid in (v, ,0]
middlepieces: ji ji —ji
for right P,. = A,, valid in [0,V.,)
middlepieces: ji ji =i
235
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where

V., max{Vv. . (2)<0}
—3ji ji

ne>

e

v

3i m.m{\)ji(l)m} . for all x,j € M .

We have only the xi turn in (6.54), (6.56) because of (6.1l) - (6.2).

Consider figure 6.2. We see that there are two switching regions
. . . ojL
¢ left switching region S K
. . . . jk
e« right switching region Sk

which, together with the middle pieces, constitute the switching

region SJ of figure 6.1.

k

3 3 . )
For Xy e(§k . 0) and x_ € (O, 3#) the form transition pro

k
babilities will not change from time k+l until N because the optimal
controller’is(atxk+l)i31 the probability piece that contains (or is
bounded by) zero. That is, for these Xy values the controller does
not actively hedge with ugyj,.-,uy-1- The following proposition char-

acterizes the values of 5; and Sa

Proposition 6.5: Consider the middlepieces of Proposition 6.4.

(1) If there is no form transition probability discontinuity

to the right of zero for any p(j,i) (¥i € (%) and for any
p(L,t) (¥4 accessible from j) then

Vk(x = j) has only one piece for Xy 2 0.

k' Tk

I R NP YN - - = - L - . - -
Sy APy ki - P _~ e el e ea M A WA A . oalalm_aa

(6.58)

(6.59)
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That is, right middlepiece Vk (j) extends to +w ;

3
3-k

= X

by (6.53).

Similarly if there is no form transition probability
discontinuity to the left of zera for any p(j,i)
(¥ 1 € Cj) and for any p(L,t) (¥ accessible from 3j)

then

< 4 . < 0.
vk(xk'rk j) has only one piece for xk__ 0

That is, left middlepiece V

X (j) extends to —=~;

gi = = by (6.52).

Now suppose (1) does not hold. Let

8. ie Cj

é min{v..(t) >0
] Ji

e, V., =1

t .
Ji

1,.

Then at each time k = N-1, N-2,...,ko

8.
—d
a(j)

~RM

Kerp 3

2 .
[1 s 200 (6.60)

<3
0<d £ R(3)

]

In addition the {Gi Ik = N-l,N-2,...} are related as follows

. N :
if j € g
J 2
3 k+1 [ b (j) oRM . ]
<K iz Mt rm Ker B (6.61)
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{4) Now suppose (2) doesn't hold. lLet

i C
o, é max‘ v,.{t) <0 " e ] )
ji

j -
( t=l,...,\)ji—l‘

Then at each time k = N-1, N-2,.,., k_:

o
% b%(3) s ]
)| < <
oy |t R(J) Kk+l(3) < 5 < . (6.62)
In addition the [5J lk N-1,N-2,..] are related
as follows, if j e Cj:
53 2,
—k+1 b () 3j
—Xro < <
et R(J) Kk+l(3) <80 . o (6.63)

The proof of this proposition appears in appendix C.7.
It is obtained by direct calculation from the optimal clcsed
loop dynamics in the middlepieces, as specified by

(6.55), (6.57).

We now consider the existence of steady-state middle pieces

Vﬁu(x,j) lim Vim (x, =x, T, =3)

(N~k)+®

(x, )

lim VRM(x =x, r, =Jj)
(N-K) +% k k k

for the infinite time horizon problem.
As in Proposition 6.2, we have directly the following:
Proposition 6.6: For the problem of Proposition 5.1 where (6.1)-(6.4)

hold, if we take




e e e e e Ealiar i

A

h Lol
A

l Vk(xk,rk"'i)
| I
I | I
| | |
_ N\ | |
- V, (xg, ) ] LEFT RIGHT | I rigur
o | MIDDLE | MIDDLE | ENDPIECE
LefT ! | piece | PiEce | |
2 ENDPIECE | | I I
. | J& | jR l
"5 | £;k l k i
._: : I ! "
- | | | K
- | LEFT I RIGHT | x
P SWITCHING | SWITCHING 1
& | " ReCiON 1 ! RECION ! K
8l(1) 8l 0 3 B imylj)-t)
'

FIGURE 6.2: Switching regions, endpieces and middlepieces
of Vk(xk,rk=j).

' do .' ;'i
IR
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P, = A, (LM for all i,j € M
31 Ji =

orx

pji = Aji(RM)

then conditions (1)-(3) of Proposition 3.2 are necessary and sufficient
for the solution of the coupled difference equations of Proposition 6.4

to converge to the unique constant sets of steady-state values :
LM -

K (HN>0, jen . for left
middlepieces

{K:M(j)z_o ' j € M} for right
middlepieces

as (N-k)= «, given by the solutions of the sets of M coupled algebraic

equations
GrG) 1] A, @ k@@
M iee,
K. (§) = > 1 = (6.64)
RO+ L ] Ay (L) (K, (3)+Q(1) 1]
iee, I
j
a® (R 1 ] Ay (R KD () 40061
RM 1eey (6.65)
K = 5 o
RGBT UL AL, (R KT (1)+0(4)]]
iee,
j
with
M, . 2,IM .
v, (x,3) = x"K_"(3) (6.66)
Vx5 = 2K j e M
The steady~state middlepieces of the optimal control laws are
uiM(x,j) = —LEM(j)x
(6.67)
u(x,3) = Lo () x

240
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where
1) = kM) /a0
(6.68)
RM, . RM, . .
L, (3) =K _ (j)/a(d) .
These middlepieces are valid
for Vim(j): Oixigi
(6.69)
for ViM(jh §iSXi°
where, if (6.60), (6.62) hold:
5.8 b2 (§) aRM
0282 5 L o % (3))< ® (6.70)
a. 52(4) ALM 5
- < ;%ET 1+ ETE%— K, ()], <0. cJ(6.71)

As with the endpieces we have that if each form is stabilizable then
(by Corollary 3.5) these conditions are satisfied and the steady-state
middle pieces exist. And for transient forms that the system does not
return to after leaving, we can relax this stabilizability requirement
to

pP,; a, <1

ii i

by Corollary 3.4.
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Example 6.1 (Example 5.1 Revisited)

From proposition 6.1 we can compute the endpieces of Vk(xk'rk=l)

and uk(xk,rk=l) recursively. We find that

V;‘M(xk,l) = vl‘:"‘(xk,l) - :{ &m(l)
e g l) = wfog 1) = -nfare

NEMCRDMI (MO R ¢ B A O
PRI O A . et e N
. & & » w & o . . . . . . . ' R

242

- e -l S g R R - o S Mtk et It e Boet B vt Sene Bras g 2+ LSl s et sl Jant e et e,

o
- Le _ Re ey L L2 _Le
. Vk (’ﬁ('rk_l) = Vi (’S('rk—l) = xk Kk (1)
‘ - _ ..Re _ - _sLe
rg ‘ﬁ‘ (:5‘,: =1l) = u (:ﬁq,rk-l) I.k (l)’S{
- where
-
Le Re

IS« (1) = IS] (1)=0

1 Le
1+ = (1) + = (2)
1 4 +
KoL) = K1) = 3 Ser Sert
1l e 3
2+ 7 lﬁﬁl(l) *3 &Hl(z) -
Re
= I..k (1) = Lk (1)

; VL ( r =1) and er( r =1) are the same in this example because of
- **)' Tk k %'k
:’:;‘ the symmetry (about zero) of the form transition probabilities.
»
l:"; From Proposition 6.6 we get the middlepieces

A 2.8 _ssm -

- o,
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where

K1) = KSM(1)=O
3 Iy 1
1 += (1)+ = (2)
I{M(l) _ 1{"(1) _ 7 %1 2 Nee1
3 _IM 1 ¢
2 + TR W+ 7K @
= Lkmu) - LkRM(l)

The values of these endpiece and middlepiece parameters are listed

for several time stages in table 6.1.

Endpieces Middlepieces
Kk LM =RM ___LM =RM Le =Re =Le =Re
Kk (1) Kk (L) Lk (1) Lk (L) Kk (1) Kk (1) Lk (1) Kk (L
N
N~1 .7647058 .636363
N~2 .7821909 .694868
N-3 .7834843 .6995943
l l
. 7836889 . 7000659

TABLE 6.1: Middlepiece

and endpieces for Example 6.1

Since b(1)#0, these parameters gquickly converge as (N-k) increases to

the steady-state values

RM M

KoL) = KoL)~
k21 = g% =

-} <}

.7836889

. 7000659
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The following two examples further illustrate the cqualitative

‘ P
[ o

properties of these middlepiece and endpiece cost functions. In
particular, example 6.3 demonstrates that the endpiece and middlepiece
functions can become infinite as (N-k)-»® even though the cost-to-go

is, in fact, finite with probability one.

Example 6.2:

We consider the foliowing system:

xk+l = Zxk if rk=l ]
= l-x + if r =2 i
el 02 % T % Tx '
0 if |x|<1 -
P (llz:x) =

A=1/2 if |x|>1

1 if |x|<1

p (2,l:x)
1/2 if |x|>1 ;

The form structure and transition probabilities PpP(l,2:x) and
P(2,1:x) are illustrated in Figure 6.3.

We seek to minimize
N-1 2 2 I

. 2
ukm.m . kzk (R, + w) + x )
gecey N-1 —o
0

o

P PPy

PP S SRP PLr S AP SRP U R VY PRV PR ST U PR NN — e A A A C




o MEE & . ea—man

P(1,2:x)

P(t,4:x)=24-P(1,2:x) /———.\0 P(2,2:x) = 1~-P(2,1:x)
( )1 P(2,1:x) 2: )

(@)

el A

$ P(1,2:x) 4 P(2,1:x)

A VY n LRSI e 22 4 g T
TR A SPOAPEAGHE ¢ AU
P A e e et . B
. S R T P

1 )
N A=1/2 1/2 = A 12 /2
.‘ —V a
-~ —+ + > >
- 1 X -1 1 x q

(b) (c)

Figure 6.3: (a) Form structure and probabilities (b) p(l,2:x)
and (¢) p(2,1:x) for examples 6.2 and 6.3.
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Let us consider some qualitative properties of the optimal expected
costs-to-go Vk(xk,rk=l) and Vk(xk,rk=2). In form r=2 the system is
controllable. Thus we know that Vk(xk.rk=2) is bounded (for any finite

X) since the control

will drive sl to zero with a (nonoptimal) cost of

a2(2) 2

X .
b2(2) K

Note that the system is not stabilizable in form 1. Thus the value
of ]xl will double and a cost of x§+l will be changed at each succeding o
time, until the system jumps into form r=2. Once it get into r=2, the

expected cost-to-go is finite.

Since p(1,2)> 0 for lxl>1 it is clear that the optimal cost will
be finite with probability one as (N-k)-~. As we will see, this does
not guarantee that the expected cost-to-go Vk(xk,rk=l) will remain

finite, however. That is, the convergence of the cost-to-go with

Lt
v e
S

probability one does not imply that the controlled system is moment

™
v

= stable.

=

re From Proposition 6.1 we have that
o

ks

o

L-I's

8
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Le = ie 1 Le 1
Ko (1) =K (1) 4[1 +3 +l(l) + 3 K, 1(2)]

b

Re % [“ 2 13(+1(1)+ % Kiil(z)]
» B h@ s 1+ 1+ 2k (+ E e (2]
- 2 Nkl 2 Neel
728
- K;'e(l) = xge(z) =1 .

From the first of these equations we can verify that there is no

finite positive steady-state value Kf;e(l). If the steady-state values

Kie(l) ’ K::e(Z) were to both exist then they would have to satisfy

K (1) = 4 + 21( (l) + ZK (2)
hence

Le Le

Kw (1) = -4-2K°° (2) .

For any K (2)> 0 (which must be the case), Kie(1)< -4. Thus

we see that K (1) grows without bound as (N-k)-x.

However,
1 1 11
(2) = 7 [K;'e o + o 5—(&“(2)/13&1(1))]
+1
2 1,1 .
) H )
+1
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Therefore as (N-k)=2» and Kiil(l)¢w we have

1oL
lim 1{:(2) = —4—1—2—= 1/4 .
(N-k )= 3
Ei That is, ]

L ae e )
CR

Lo (2) = Koo (2)

@«

1/4 .

H
1
i

From Proposition 6.4 we have

T Py
AADAr
TR Y

. Ve

IM . RM__ . LM
Ko (1) = K (1) = 4[4k (1)]
LM _ JRM _1 M . ]
Ke (2) = KO (2) = 2 [+ (1)] . - I
L+ [+ (1)] -‘
where
KD = K2) =1,

Note that these middle piece costs are not coupled. This is because

the middlepieces are valid only in a region contained inside the

imacanindlil dhtenh o loctooBeaColl i och bt e

interval (-1,1), in which form r=1 is an absorbing form.

From the above we see that as (N-k)-w,

it domienin

K1) = 1{"(1)
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become infinite and

g

v a3
e

K2 = 2 — 174 = K22 = k)

;

The values of the quantities described above are computed for four

time steps in Table 6.2.

Le . . __Re Le, . _. Re IM,  RM LM . _RM )
k Kk (l)—Kk (1) Kk (2)—Kk (2) K (l)—Kk (1) K (2)=K  (2) 1

N 1 1 1 1 b

N-1 8 . 1666666 8 .166666
N-2 20.333333 . 2089041 36 .225
N-3 45.084474 .229269 148 . 243421
N~4 94.628202 . 2398609 596 .248333
© 1/4 © 1/4

TABLE 6.2: Middlepiece and Endpieces for Example 6.2

Note that for both the middlepieces and endpieces in form 1, the
sufficient condition for finite steady-~state costs of Corollary 3.4

is not met. That is,

E DR

2 )
Plla (1) > 1 . -

b abiod 4

LTl
‘J““!—‘.—‘.x
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This is illustrated in figure 6.4. However the cost-to-go
Vk(xk.rk=l) is finite with probability one. -
In the next example we let p(l,2:x) for |x|>1 be a parameter.
If the probability of switching from r=1 to r=2 is high enough, the
endpieces of Vk(xk,rk=l) remain finite as (N-k) increases but the

middlepiece of Vk(xk,rk=l) still blows up.

Example 6.3: We generalize the previous example by considering

arbitrary A values:

A Ix|> 1
p(l,2:x) =

0 [x[< 1 .

Then

Le

K1) = Ko (1)

4[1+(1-A)x§f1<1)+ Axiil(Z)]

1 1 Le 1 _Le

Kie(z) = 1<:e(Z) = 7 1+ 2 R 3 KRy N
1 1 Le

1+{1+ E 1<+l(l)+ E- IS‘+1(2)]

R 1

with K;M(l) = Kk and KEM(Z) = KEM(Z) taking the same values

as in example 6.2.

?
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- < :/—_\ '
o for middle pieces: 1 .1 o2
Piyaf =4 b(2)=1#0
b(1)=0

As1/2

for end pieces: 1-x=1/ZO 12 ® . ){/2

Py a2 =2 b{2)=1#0
b(1)=0

SO ad s ikt

Figure 6.4: Form structures applicable for endpieces and
middlepieces in examples 6.2 and 6.3.
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From Figure 6.4 we see that the sufficient conditions for the

existence of steady-state middlepieces are not satisfied in form 1

since a2 = 4>1. But if 3/4 <A<l then the sufficient condition
P11%1 =

for the existence of steady-state endpieces in Corollary 3.4 is

satisfied:

2 ,
P2 = (1-A)4<1 3/4 <A<1 .
. . , Le ~ Re
When this holds we find that for the endpieces, Kk (1) = Kk (1)

converge to a finite positive steady-state value (as do

K;e(z) = xﬁe(z) and xi”(z) = K§M<2)) even though the middlepiece

in

r=1 has infinite steady-state cost. The steady-state values of the

endpieces of V,(x,r=]) are given by

-(561—29)+\J456K—29)2+4(8k—2)(32X-12)

m -
Ket(2) = K°(2) = 2(320-12)

4(1+ AK-%(2))
4)1-3

Le Re
K, (1) =K (1) =

For example, take A=7/8. Then we can compute the values shown in

Table 6.3, and from the above we have that

KLe(Z) = KRe(Z) = o3+ Y45 = ,2135254
-} (-] 8

K (1) = KRe(l) = 9.4946778 .

(-] -}
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k rgi‘e(nﬂ{‘eu) 1<,I<‘e<z)={e(z)

'y
A N l l
: N-1 8 . 1666666

N-2 8.5833331 .2089041
N-3 9.0228298 .2109138
>, N-4 9.2496132 .2122178
\'.'

: : +
9.4946778 .2135254
)

ff TABLE 6.3: Endpieces for Example 6.3.

’,.\

Q.‘

We might quess that since the middle pieces in form 1 grow
without bound (in value) as (N-k)¥«, the "width" of these pieces

is going to zero. That is,

L

1
. =0
lim q

(N-k) >

S A4ty iy

- I8

- lim Is'; =0 .
. (N~k) 2
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Examples 6.1-6.3 illustrate some of the diverse behaviors that

the endpieces and middlepieces can exhibit as (N-k)-+w, These behaviors

et
BRSNS

s
s

\
?
)
)
{
]

are directly related to the expected behavior of the controlled
x-process, and to the qualitative properties of the entire expected
»:: cost-to-go Vk(xk'rk)' As we saw in example 6.2, for very simple examples
we can get phenomena such as finite cost—to-go w.p.l but infinite
expected cost.
This concludes our discussion of the middlepieces of Vk(xk,rk=j)
and uk(xk,rk=j) for the JLQ control problems of section 6.1. We
have thus far characterized the behavior of Vk(xk’rk=j) and

N uk(xk,rk=j) over extreme values of x (far from zero) and for x near

zerc. In particular, we have obtained a description of the steady-

£t

- state behavior of these endpieces and middlepieces in turns of cor-
- responding x-independent JLQ problems of Chapter 3. In the next section
b we consider the behavior of the controller over the switching regions

of Figure 6.2, between the endpieces and middlepieces.

p -~ 6.4 Bounds on the expected costS—-to-go

23 In this section we continue or examination of the steady-state

:E properties of the scalar, x-dependent JLQ controller. We are concerned
i; with the nature of the expected costs-to-go Vk(xk,rk) between the endw

pieces and middlepiece (ie,in the switching regions of fig. 6.2). We
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develop upper and lower bounds on Vk(xk,rk) here that correspond

to x-independent JLQ problems. Thus bounds can be computed off line
via recursive difference equations and, using the results of Chapter 3,
we have necessary and sufficient conditions for these bounds to
converge to finite values as the time horizon becomes infinite.

We motivate our derivation of these bounds by the following
example which demonstrates that the cost-to-go, if we stay with
certainty in the "most expensive form", is not always an upper bound
on Vk(xk,rk=j) and the cost-to-go, if we stay with certainty in the
"least expensive form", is not necessarily a lower bound on
v, (x ,rk=j).

k k

Example 6.4: Consider the problem

xk+l = xk + uk for rk=l,2

where we minimize

N-1

2 2
k=20 [x,, 00z, )+ WRx)I| |

min Es
{

and the form structure is a "flip-flop" system:

p(1,2)=1 p(2,1)=1

p(1,1)=0 p(2,2)=0 .




ENRSEEL S S A e dite e SNEUE N AR i - s A e i A ey |

-
al Let
X

»:; o(1)=1 R(1)=100

LIPS IRLIDEL UL T S

Q(2)=100 R(2)=1

That is, the dynamics in each form are the same, and

. in form 1 the control cost is high

. in form 2 the control cost is low. I

The solution to the LQ problem corresponding to staying in 1

form 1 for all times (that is, with @Q=1, R=100) yields

PSRy Y L

- G 22 @

- k Tk k :
where Kél) =0 .

P (1) (1) §

’ (1 _ 200K +h 100 K |} +100 \

- 1oo+(x£ii +1) 101+ Kéi; y

PRI

The solution to the LQ problem corresponding to staying in form 2

= for all times (that is, with Q=100, R=l) yields
(2) _ .2 (2)
£ T %K

where

ool et nd o h ok ol s s BN L

(2) (2)
(2) _ N Y109 Ky H10O

1+(x£il+100) 101+x¢i; .




The solution to the x-independent JIQ problem (by Proposition

3.1) yields
V, (%, ,r,=i) = x> K_(i) i=1,2
k T TR KA =L
where
KN(l) = KN(Z) =0
4
Kk(l) ) 100 (100 +Kk+l(2)) 10 °+100 Kk+l(2)
100+ (200 +Kk+l(2)) 200+Kk+l(2)
. - L+, (1) e
l+(l“ﬁ<+1 (1)) 2+Kk+l(l) :

All of the above costs are listed for four time steps in Table 6.4.

257

) always in
always in " ! . .
" " expensive" optimal solutions
cheap .
£ form to flip-flop
orm
_ Q(l)=1 problem
Q(2)=100 -
. R(1)=100
time R(2)=1 (1) (2)
K K k(D % %
. N-1 .990099 . 990099 50 5
[. N-2 .9901951 1.9512669 50.124688 . 9807692
T&; N-3 .9901951 2.866664 50.243994 . 9808152
% N-4 .9901951 3.7227389 50.244006 . 980859
ﬁi
- TABLE 6.4: Costs for example 6.4.
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From Table 6.4 we see that the optimal costs-to-go in the
flip~-flop JLQ problem are not bounded by the cheap and expensive

IQ problems. That is

- (1) (2)
Vi (K B 21> VT (g )2 v T ()

- (2) (1)
Vie B BT < VT (RIS v T )

The reasors for this can be summarized as follows:

(2)
Yk

1. is not a lower bound on Vk(x ,rk) because

k

. in the "cheap form" problem the optimal 1Q
controller (assuming rk=2, Vk) spends a lot
of control energy (since R(2) is only 1) to

avoid the relatively expensive (Q(2)=100)

2
cost on Kerl

. in the flip-flop problem when rk=2 the con-
troller does not have to spend as much energy

since r will be 1, and thus the lower cost

k+1

2 2
xk+1Q(l) = %+l

will be charged instead of xi+1Q(2) = 100 xi+l.
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(' 2. Vlil) is not an upper bound on V. (xk,r ) because
> . in the "expe;xsive form" problem the optimal LQ
controller (assuming rk=l, Vk) keeps w small
3 to avoid the relatively expensive control cost
» w? R(1) = 100 W .
H ) . in the flip-flop problem with rk=l, the optimal
' JLQ controller must spend more control energy
' than this since, at the next time step,
' xi+lQ(2) = 100 xi_._l will be charged instead of
o 2 _u2
- a2 =X
i Q
G From this example it is clear that upper and lower bounds on
‘ Vk (xk,rk=j) must take into account the form transition probability
',f'_:‘ structures. The following proposition develops these bounds.
:::; Proposition 6.7: (Bounds on V (xk,r ))
;’ Consider the JLQ problem of Proposition 5.1, where (6.1)-(6.4)
hold. Then for each j € M, the expected cost-to-go Vk(xk,rk=j) is
o bounded by
=~ vEB IV (=T =38 V (% ,3) (6.72)
- k % X *x

h ! APV U W T W R T SN




for each xk, where

;] A 2 .
Vk (xkrj) = X KiB(J) lower bound (6.73)

UB ., A 2 _UB, .
Vk (:ﬁ‘.J) = xk lﬁ‘ (3) upper bound (6.74)

with the parameters in (6.72)-(6.74) computed recursively, backwards

in time by

2 ~LB
a“(HRHED (3)
K2(5) = > K’fg (6.75)
R(3)+b" (K, (3)
2 ~UB
a® ()RR, (3)
R (1) = - Kf;; (6.76)
R(3)+b° (DR, ()
where
K2 (3) = min Ioa,@h K (e ) (6.77)
e=1,..,y  iee?
RS T3
AUB L 3y UB oy o
K, max j iéc Ajp B IR (1)4Q(1) ] (6.78)
=190 1€
with
Ko () = K20 = K (3) . (6.79)
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Ve =7 l | Vi
left right
' endpiece I endpiece
|
| left right
middle [middie
I piece
| kvka
I lower l
p—ound 4 -+ —t -
3l(1) 3 3l 3l imy (i) Xk

Figure 6.5: Upper and lower bounds, endpieces, middlepieces and
switching regions of Vﬁ(xk.rk=j).
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( Here lil is the indexl of the p(j,i:x) piece that is valid for
é. x € ] (t).

A Ak+1

? ]

The proof of this proposition is given in Appendix C.8.

Basically these bounds arise by taking the worst case and best case

transition probability pieces in (6.78), (6.77) at each time (for

-+ ol rFaaiy
.
»

each j € M). Thus the bounds are quadratic (not piecewise quadratic)

;; in x . In Figure 6.5 this upper and lower bound is illustrated for
X an example problem. Note that for this particular example, the
- upper bound and left endpiece are the same. That is,
. VLe(xk,j) = VUB(xk,j). In general the endpieces need not be the
- k :
) same as either the upper or lower bound.
% We now consider the existence of steady-state upper and lower
.f bounds on the steady-state expected cost-to-go:
LB ., A .
. v, (x,3) = 1lim Vts(xksx,rk=3)
- (N-k) oo
- UB . .
- V@ (x,3) é lim VEB(xk-x,rkﬂ)
N (N=k)
ﬁf for the infinite time horizon problem where (if all of these quantities
i; exist):
. 3
LB UB
Vo (DL Um Y xS V)
L (N-k )+
%j las defined in Appendix C.1l.
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We cannot directly apply the conditions of Proposition 3.2 to

Proposition 6.7 (as we did for steady-state endpieces in Proposition

aem_taa e oA . e

6.2 and middlepieces in Proposition 6.6) because the upper and lower
bound calculations in (6.75)-(6.79) do not directly correspond to

time-invariant x-independent pr~+" < choice of index (t) in

Pl Pl e it A 7O YR

(6.77)-(6.78) may change with k, as (N-k) increases. However we can
find weaker upper and lower bounds on the expected costs-to-go that do

correspond to x-independent JLQ problems and that do .converge as

Clal o e A -

(N-K) =4,

N A

Proposition 6.8: (Steady-state Bounds)

With

ke ol A S - -

max A, (8) all i,j € M (6.80)

tﬂl,.- ’;ji jl

pji -

Aamm .

conditions (1)=(3) of Proposition 3.2 are sufficient for the existence

Zadte

of a set of nonnegative scalars

such that, as (N-k)—>«» we have for each jeM

K (3)S K(3) . (6.81)

Ao SmBa e s o a' at

B T T S
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i
o
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H ere {E(j): j € g_} are the nonnegative solutions of the set of M

coupled equations

A2HRGI T p.. KE)+GE)]
. ji
- 1.€c.i
K(j) = 3 — (6.82)
RGBT ] py; (KEIHE)]
i€, 3

with the pji in (6.82) given by (6.80). Similarly with

pji = min _ )\ji(t) all i,jeM (6.83)
t=l"°'\)ji

conditions (1)-(3) of Proposition 3.2 are sufficient for the existence

of a set of nonnegative scalars

s 4
-

K(j) 2 0 jeM
such that, as (N-k) —»« for each je¢M

R(3) - K2 ()

(6.84)

where {K(j):j € 5} are the nonnegative solutions of the set of M

coupled equations




[3
yamw 3

{
2 , X .
.- ARG I § p.. (KEL)+(i))]
. ji
. lecj
K(3) = 3 (6.85)
¢ R+ L ] p, (KE)I#Q())]
% i€e,
]
:: - with the pji in (6.85) given by (6.83). fThus as (N-k) —® we
have
I UB . 2 _UB,, -
N Vg (x,3) = x° Rg (3) < x2K(3) (6.86)
LB 2 1B .
N Vg (x,3) = x" K (3) 2 x2K(3) (6.87)
R (w]
respectively, for each j € M.
~:‘ . The proof of this proposition appears in Appendix C.9. These
& I bounds correspond to the highest and lowest possible cost parameters
j; at each time stage. Note that for problems with each form stabilizable,
)
v the above conditions are immediately met.
& To summarize, in this section we have obtained upper and lower X
; bounds on Vk(ﬁ(,rk=j) that are recursively computed with an ;
’ embedded comparison of scalar quantities at each time step (in :
L (6.77)-(6.78)). !
\ We then cbtained sufficient conditions for weaker bounds to
)
X converge to steady-state values as (N-k)+® , In Chapter 6
Y
—~—
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{ (i.e., when (6.1)-(6.4) hold) the stabilizability of each form is
then sufficient for the existence of steady-state endpieces, middle-
pieces and overall bounds on the costs-to-go. Example 6.3 shows that

this is not a necessary condition.

L 6.5 A Single Form-Transition Problem

! In this section we farmulate a special class of JLQ problems
that will be used in the remainder of this chapter and chapter 7

to illustrate various qualitative properties of the x-dependent JLQ
kil controller.

We consider systems with M=2 forms:

Xep1 = a(rk)xk + b(rk)uk (6.88)
rke{l,Z}
w,  if |x|<a
- p(l,2:x) =
Eg; w, if |x|> a
L p(l,1:x) = 1-p(1,2:x)  p(2,1)=0 p(2,2)=1 (6.90)

.

The form structure and possible shapes of p(l,2:x) are shown in

AN
_‘l.l‘.“ .'l'\‘n .“-",

Figure 6.6. There is only one possible form change here (from r=1

1 X
4

..
(]
.
o

to r=2) and the form transition probabilities are symmetric about zero.

.

et ®
[N
Yt it

v
DI )
. 4 .
.

‘Q‘I.I.‘..;.l ‘.
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P(1,2:x) :
1 —-(2) )r2,2)01
P(1,1:x)=1-P(1,2:x)
()
A P(1,2:x)
wo w2
-t wo> Wy
} } - X
-a a
(b)
A P(1,2:x)
Wy 7 ‘
wz L wz
| Wy > Wy
4 } — X
, -a a
: (c)
.:;i:_'- Figure 6.6: Form structure (a), and p(l,2:x) for (6.1)-(6.2) where 3
y » (b) w.>w., and (c) w, > w.. :
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1 1
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We seek to minimize

Nil 2 2 2
E [WR(r )+ Q(r )1+ x K (r.)» . (6.91)
Sree ey | ek B 412 e N TN

min

Here for each j=1,2, the féllowing parameters are all finite
Q(1)> 0
Q(2)> 0
KT(j)_>_ 0
R({j)> 0O
b(§)# 0 (6.92)
a(j)> o
6 >0
and
0 < w, <1

< <
Q w2 1

(6.93)

From the symmetry of the form transition probabilities (6.88)-(6.90)
and costs (6.91) about x=zero, it is clear that the expected costs-
to-go Vk(xk,rk) will be symmetric about zero.

Note that this class of example problems includes example S.1l

as a special case.
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Note that once the system enters form r=2, it stays there. Thus

the usual LQ theory yields the following:

2

v, (% 0%, =2) = x K (1:2) k=N,N-1,...,0 (6.94)

“k(~’5<'rk=2)~ = I.k(l:2)15( k=N-1,...,0 (6.95)

where
Ry(1:2) = K (2)
(2R K, (1:2)40(2)] (6.96) ]
(1:2) =

R R(2)+b° (2) [K, | (1:2)+Q(2)] a
-b(2)a(2) [K_,. (1:2)+Q(2)] X
L, (1:2) = > Skt 6.97) -
R(2)+b  (2) [lﬁ‘+l(l:2)+Q(2)] J
]
Since b(2)#0, Kk(l:2) converges monotonely as (N-k) increases, to K
4
1
2 2 2 ]
R(2) [a(2)-1] R(2) [a“(2)-1] 2 2 :
K_(1:2) = + + 4b“(2)a“ (2)R(2)Q(2) ]
-b2(2)9(2) -b2(2)0(2) |
2b2(2) {
(6.98) i
X
: :
N ;
L |
3
1
|
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where Kk(l:Z) decreases as (N-k) increases if KT(2)> Km(l:Z) and
increases if KT(2)< K (1:2).

Now consider what happens when rN_l=l. We are given that

at time k=N,
v (x ,r=1) = x> k_(1) (6.99)
N NN N T : :

From sections 6.2 and 6.3, the endpieces and middlepiece of

Vk(xk'rk=l) and uk(xk,rk=l) are given by

Re _ e _ L2, Le
Vk (xk.l) = Vk (xk'l) = kak (1) (6.100)
W 1) = 9 1) = LS (Lx (6.101)
and
RM LM 2_IM
Vk (:5‘,1) a Vk (xk,l) = xkls( (L) (6.102)
w1 = w0 = (6.103)
where
Re Le LM RM
KN (1) = KN (1) = KN (L) = KN (1) = KT(l)
and

K;e(l) = Kie(l). K;”(l) KEM(l) are given by

00 - NRESEREN

A il indh Sl thdl bl th 4 S AR AP AP L S R R A R R A s S e e T
R S . P B PR . P B - o - R

- .




az(l)R(l)ﬁiil(l)

Re Le
Ko(D) = K5 = — (6.104)
R(L)+b° (RS, (1)
Re,. _Le,. _ -b(l) __lLe
where
~Le Le
Kk+1(l) = (l—wz) (Kk+l(l)+Q(l)) + NZ(IS(+1(1:2)+Q(2))
and
2 ~LM
a (1)Rr(1) (1)
ko = kM = - Kf;; (6.105)
R(L)+b° (LR (1)
RM - IM _ _~b(l) M
L ) =15 M =R KX Y
where
ALM M
R0 = (mu) (K, (D401 + 0 (K, (1:2)40(2).
Since b(1)#0, the steady-state quantities K-o(1) = K. (1) and
K2'(1) = K.'(1) are finite and positive, satisfying
Le
5 K% (1) X_(1:2)
a (1)R(1) (l-wz) . |+ w, +
(1) = K2 = 2(1) 2(2)
, K (1) K_(1:2)
RO+2(W | Qew)f T, ]+ w, .
(1) 0(2)
(6. 106)
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ey K_(1:2)

2
(MR A=y f ),
K:M(l) = Ki‘M(l) = Q(1) 0(2)

LM

R(L+62 (1) [ (2-wp S P ) 4y (Kal:2)

1

+ +
Q(1) Q(2)

(6.107)

The partition of Xy values specified in step 1 of Section 5.4 is

Bg(1) = (Yg(0), ¥y (1)) = (-,-a)
AN(Z) = (YN(l)rYN(Z)) = (-a,a)
= (a,®)

AN(B) = (YN(Z)’YN(3))

as shown1 in Figure 6.7.

The condjtional expected cost=-to-go

T (gl =0) = xR (6) + x @ (6) + & (&)
for Xy € AN(t)
Rg1) = Ro(3) = (1-w)) (K (1)+Q(1))
+w, (K (2)4Q(2))
Re(2) = (1mw)) (Rp(1)+Q(1))

+ wl(KT(2)+Q(2))

lThe superscript "1" is not used in A;(t), ﬁ;(t), etc., in this

section since we are only considering form 1.

N




>|'N(1) Tni2)
A1)y Ap(R) ——A\(3) —=
| 1
_'a o) & Xr:

Figure 6.7: xN partition for (6.1)-(6.4) example problem.




-
{ can take the two possible shapes shown in Figure 6.8, depending
é} upon the values of wl. wz, (L), Q(2), KT(l) and xqux We will
ié consider each case in turn.
o Ccase 1l: If
<
Y
~
RS
" - - >
; (w2 wl) [(KT(2)+Q(2)) (KT(1)+Q(1))] 0 (6.108)
‘ hence
K (1> R (2) (6.109)
: then VN(xNIrN_l=l) is as shown in Figure 6.8(a). The conditions
o (6.108), (6.109) are met when
1; . W, > Wy the probability of the form change is .
% greater away from zero than near it

. KT(2)+Q(2)> KT(1)+Q(1) the cost charged at time
N is greater in form 2
than in form 1.
This corresponds to regulation problems in failure prove systems. The
system is operating normally when r=1 and has failed when r=2. A
higher cost is charged in the failed mode than in normal operation,

and the probability of failure is greater away from the regulator

goal of zero than near it.




(b)

Figure 6.8: ’?IN(xN\rN_l-l) when (a) fg\‘(l) 3%(3» %(2) {(case 1) and when

(b) ?Sq(z» f%m zﬁN(s) (case 2).
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Example 5.1 illustrates this situation. Conditions (6.108)-(6.109)

are also met when

e W, > W

1 5 the probability of the form change is

greater near zero than away from it

. KT(1)+Q(1)> KT(2)+Q(2) the cost charged at time N

is greater in form 1 than in

form 2.
Case 2: If
(wl-wz)[(KT(2)+Q(2))-(KT(1)+Q(1))]> 0 (6.110)
hence
12N(2)> Ry (1) (6.111)

then we have the situation shown in Figure 6.8(b). Conditions
(6.110)-(6.111) are met in problems where the probability of transi-
tion form r=1 to r=2 is at "cross purposes" with the cost structure.
The case

>
W) 7%,

KT(2)+Q(2)> KT(1)+Q(1)

corresponds to the probability of "failure" (i.e., changing to the

higher cost form) being higher near the regulator goal of zero than
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away from it. The case

WY

KT(1)+Q(1) >1<T(2)+Q(2)
corresponds to the probability of "success” being lower near the
regqulator goal than away from it. As we will see in the next section,

the "cross purposes” of the form transition probabilities and costs

can lead to local minima of the expected costs-to-go.

6.6 Last Stage Solution

In this section we develop the iast-staqe solution for the two
cases of the last section. The solutions of these one-stage problems
illustrate certain basic qualitative properties of x-dependent JLQ
controllers.

Using Appendix C.1 we find that for both cases of the last

section,

D
~
N
~
[}

( b2<1)f<N(2)
-a\l+ R—(l)—_ (6.112)

(6.113)

b2<1)f<N(z))

R(1)

bz(l)fgq(z)>
) (3) = all+ T(l)——— (6.114)

€} (2) = a(1+

(6.115)

b2 (1)12N(1) )

R(1)

e (1) = -a(l+

BRI Fr N

. SO  DARATS
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and from Proposition 5.2 we find that

g, =5 (6.116)

candidate costs-to-go must be considered. For Case 1

(ﬁN(l) ES ﬁN(3)> ﬁN(2)) these candidates are

1,U 2,U 3,U 2,L 2,R
s Vgl Vil Veer Vel Uger (6.117)
if ﬁNtl) = K, (3)> R (2)
. ,R 3'L . s
(i.e., Vﬁ-l and Vﬁ_l eliminated)
and the 9's and ©'s in (6.112)~(6.116) satisfy
< < < . .118 N
eN—l(l) GN_l(Z) GN_l(Z) eN_l(3) (6.118) 3
A - ~ < A .
For Case 2 (KN(l) = KN(3) KN(2H the candidate costs are
LGl 2,U 3,U 3L _1,R
-1 V-1t V-1t Vyert Vner
oA n _z (6.119)
if KN(2)> KN(l) -KN(3)
. 2,L 2,R . .
(i.e., VN—l and V&_l eliminated)

and

Oyy (D)< g W< B <o @) - (6.120)
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The eligible costs for vﬁ—l(xN—l'rN—l=l

) over various x
N-1

values are shown for each case in Figure 6.9. ]
From Figure 6.9(a) it is evident in Case 1 there are intervals

N
of values over which the optimal controller must involve hedging ,
e

*N-1

to a point. These are'

B @ 012 By (¥
N-1 a(l) ' a(l) ' a(l) ' a(l) :

( =1) for these case 1l problems

We will now determine V

N-1"%N-1""N-1

where the costs and form transition probabilities are not at "cross

purposes”. That is, where

KN(l) e KN(3)> KN(2) .

We have already computed vﬁ-l(xN-l'rN-l=l)’ uN_l(xN_l,rN_lsl) and

( =]1) for an example problem of this type in Section 5.3. The

X *N-1"TN-1
same steps detailed there (with the shortcuts described in Section 5.6)

yield the following:

Fact 6.9: When ﬁN(l) = ﬁN(3)> EN(Z) (Case 1), the optimal cost-to-go

and control laws have
Mgy (1) =5 (6.121)

pieces, joined at X1 values
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Figure 6.9: Eligible costs for V, . ( =1) when

. A ON-17N-1 TNl
(a) KN(l) EKN(3)> KN(Z) (case 1) and

) R (2> R (1) ziENm (case 2).
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e L

\v3:U(xN_l,1) if

Thus the optimal expected cost-to-go

V-1 o1 Ty

GN_1(4)§ X1

is given by

2
xN—lKN-l (t:l)+xN_1HN_l (t:1) +GN-1 (t:1)

for GN_I(t—l)f_ x . <8 L (¢)

N-1 = "N-1

0. (1) 8. . (2)
§. () =L |1 nh- N1 3
N-1
2 A
—a [(1)+b2(1)“ (1)] 1+ 4 /1 RED W@
— R + -
a(l)r(1) R R(L)+6% (DR (1)
(6.122)
O1 @ - 2 A
Sw-12) = TI@ T ADRD [R‘l”'b ‘1“3«‘2’] (6.123)
8y_p (3 = =8, (2 (6.124) :
8gp (4 = =8 _ (1) (6.125)
' The optimal candidate costs-to-go are
1,u -
(vl 1) if x <8 (L) 2
v lx 1) if & (<x. . <5 .(2) 3
N-1""N~1' N-1"""— "N-1 — "N-1 !ﬁ
v. . ( ,x. .=1) =
N-1'*n-1"Tn-1 2,Uu .
< V-1 e D) 3 G (DS ke ) S8, 3) "
v2rR¢ 1) if & .(3)< <8 .(4)
N-1"*N-1’ N-1' 2 *ye1 S Oy-1

(6.126)

(6.127)




A 0o .
where t=1,....mN_l(l)=5 and GN_l(O)--w, GN_l(S)—'l-°° with

az(l)R(l)ﬁN(l)
(1:1) = =K. .(5:1)
-1 R(l)+b2(l)KN(l) N-1
a®(1)r(1)
(2:1) = 2 BIRD) _ (4.1
Ky-1 220 N-1
2 ~
a (l)R(l)KN(Z)
(3:1) =
-1 R(l)+b2(l)KN(2)
2a(l)R(1)a
H (2:1) = ————— = =H (4:1)
N-1 bz(l) N-1
Hy g (1:1) = H_ (3:1) = B (5:1) = O
2
» - a 2 7 - .
Gy_q (2:1) = 2 (R4 (LR (2)) = G, (4:1)
b (1)
Gyoy (111 = G (3:1) = G (5:1) = 0 .

The optimal control law is

(t 1)xN 1 N l(t t1)
u (x , T =]) =
N-1 N-1" N-1
for GN_l(t-l)<xN_l<6N_l(t)

with
a(l)b(l)ﬁN(l)

L., (1:1) = = L, (5:1)

R(1)+b2(1)§N(1)

(6.128)

(6.129)

(6.130)

{6.131)

(6.132)

(6.133)

(6.134)

(6.135)

(6.136)

- s e e
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LN_l(Z:l) = ;(—l) = LN_1(4:1) (6.137)
a(l)b(l)ﬁw(z)

Ly_q (3:1) = —— (6.138)
R(1)+b° (1)K (2)

Py 2D = Sy = <R (4:D) (6.139)

Fyop (i) = B (3:1) = B (5:1) =0 . (6.140)

The Xy value obtained by application of the optimal control

law, as a function of x is

N-1
[a(l)-LN_l(t:l)]xN_l+FN_l(t:1)
x (x_ .,r. .=1) = (6.141)
N ON-1'TN-1
for GN_l(t-l)<xN_l<6N_l(t)
hence
a(l)R(1)
2 .5 *N-1
R(1)+b" (1)K (1)
4+
-
{L)R(1)
x (x_ _,r. =1)={( & x (6.142)
NoN-1TN-1 R(l)+b2(l)KN(2) N-1
o
a{l)R(1l)
R(1)+b2(1)§N(3) N-1
o

i
|
g
|
|

intuill i
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y' s -—R—“)—- [R(”"‘b (U kN(Z)]

2
a2hy (1) 2 A \/ RO+ 621 kn(2)
: ——= |R({)+ 1)k -
%2* ~Rh [Ret1+ 631 kn (1] [ 144 /1 T T

» H ’ = % EA R . l-
Figure 6.10 VN-l(xN-l rN__1 1) when KN(l) KN(3)> KN(Z) (case 1)

The optimal candidate cost function over each region of
X1 values is indicated by the solid line.
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In Figure 6.10 VN ( =1l) is shown for this case.

-1 xN—l'rN-l

The slope of VN (

-1 xN—l'rN-l=l) decreases discontinuously at

GN_l(l) and GN_1(4), and is continuous elsewhere. For

xN_le(GN_l(l),SN_l(Z)) the optimal controller actively hedges to

+
xN = =Q and, as is evident in Figure 6.10, the resulting optimal
expected cost-to-go is a quadratic interpolation between Vl'g and
2,0 L ,
VN:l' Similarly, the optimal expected cost-to-go over
. C . 2,0
XN_fﬂﬁN_l(3), GN_1(4)) is a quadratic interpolation between VN:l
3,U0 , , . . )
and VN-l' The width of these one-step hedging regiomsis

width of one- 2
; e U WY (2 _% \/[ 2 3 R(1) .=~
step hedging | = (;7i7>(ifif) (KN(l) KN(Z)) + (KN(l) KN(29(—5—— +KN(19

regions b~ (1)

(6.143)
Thus we see that the widths of these regions:

2 .
. increase as the "control effectiveness" b (1) in
R(1)
form 1 increases. (Thus we have more hedging to a

point when the control cost is low then when it
is high and we have more hedging when the input

gain is large than when it is small).

. are linearly related to the ratio of

(the distance of the point we are)
hedging to from zero

(the open loop dynamics in form l)
a(l)
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In other words the more stable the open loop

system is, the smaller the range of xN_1 values

where hedging to a point is optimal.

. increase as the difference in costs between the

[1] L1 ] " L > &
good" and "bad" sides of the VN(xNIrN_1=l)

discontinuities, ﬁN(l)—ﬁn(Z), increases. Thus
if the savings obtained by hedging are very

small (ﬁN(l):zﬁN(Z)), the range of X 1 values

where hedging to a point is optimal also

becomes small.

In figure 6.11, ( =1) is shown for b(1l)>0 (if b(1)<0, the

Un-1N-1"FN-1

graph is flipped around the x_ , axis). The control law increases

N-1

§ (1), where the optimal strategy changes

discontinuously at X1 = On-1

from driving Xy into AN(l), to hedging to point -a+€ AN(Z).

é (4).

=1) increases discontinuously at Xy 15041

Similarly, LY (xN-l'rN-l

At all other values of xN_1 it is continuous.

In Figure 6.12 the values of xN obtained by application of the
optimal control law is plotted (as a function of xN—l)' From (6.142)

and Figure 6.12 we can deduce that

. the optimal closed loop system is more stable than
the open loop system in form 1 for case 1 problems.
That is, the optimal controller "brakes" the open loop system dynanmics.

To see this note that over the regions of X1 values that do not
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| Hedge | | Hedge |
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l
| - Y2 | |
| | |
| | 1 | |
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ab(i)Rn(2) l i
| R(I) | ]
i | :
| | o
' + : > -
By, (1) a,,_‘,(z) B3 By, (@) XN~ 5
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i A ' l
ab(NKn(2) <+

?(1)

- -y‘

-b-yz

|
|
|
l
|
l
|
|
|
|
|

2 ~
ab (1) A R(1)+b” (1)K (2)
yl = R(1) KN(l) 1+ - 3 —
R(1)+b (l)KN(l)
2 ~
R R(L)+b“ (1)K (2)
eb(1) IV(K\I(IH— RT“i)%— > iﬁ“ +KN(1)]
* b (1) R(L)+b (1)K (1)
Figure 6.11: Control law uN-l[x‘N-l'rN-l=l] when KN(l)EKN(3)>KN(2)

and b(l)>0. The optimal control over each region of xN-l
values is indicated.
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correspond to hedging to a point (i.e., where the slope in Figure

©6.12 is positive), the closed loop dynamics are

a(l) L <a(l) i=1,2,3

b (l)s ,.
1+ ETIT KN(l) .

In the hedging regions xN_l€(6N_l(l),6N_l(2)) and X G(GN_1(3),

1

SN_1(4), the optimal controller will be

. more stable than the open loop system (in
form 1) if
>
a(l)lxN_ll o
. less stable than the open loop system (in
form 1) if

a(l)lxN_1|< o

But from (6.112)-(6.116) we see that

x__€(S (1),6 (2))
N-1" " N-1 N-1 2,
o (1+ b (1) J

= x> T (M R A

2y 1€, (30,8, (4))

hence

al |z [>a .

DSOS 4 L".;L_J

rt

P
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il el

al bt o

enall

sabid adied o AT o ostondeibni cid




“ XN(XN-I ,1)

2 A
olre ﬂf)+b (nxu(z))__
RUN+E2(1)Ky(1)

Q =3

Region of Xy
avoidance

t = } : —=
Ba() 8 ,(2) Bay(3) B (@) Xp-t

Region of x,
avoidance

1.q ,.,\/_R(nwz(nﬁ (2
R +62(1)Ry(1)

Figure 6.12: x (x ., ,r ,=1) when K (1) SR (3)> K (2) (case 1).
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({_ Thus the closed loop system is more stable than the unforced system.
fé' Note that there are two regions of Xy values that ‘are avoided by
- the optimal controller:
2 ~
oo R(1)+b (l)KN(2)
S Xy ¢|lo,a 1+ [1- T
:{’ R(1l)+b (l)KN(l)
7 (6.144)
e 2 .. A
s R(1l)+b (l)KN(2)
s Xy ¢ -all +_f1- = . —Q
A R(L)+b (1)K _(1) .
i}; The width of each of these regions of Xy avoidance is
T Z,. .~
e R(1)+b (l)KN(Z)
) ‘ a<a 1- RS <20 . (6.145)
' R(1l)+b (l)KN(l)
: Thus the widths of these regions of avoidance are

linearly related to the distance of the point

we are hedging to from zero (i.e., @)
increase as the savings from hedging increases.

increase as the control effectiveness

in form 1 increases.
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Each region of avoidance here is associated with a joining point

where the slope of Vﬁ—l(xN-l'rN-l

(i.e., with GN_l(l) and GN_1(4)). These are the X1 values where

=1) decreases discontinuously

two candidates costs cross.

We now examine Case 2 problems where the x-costs and form

transition probabilities are at "cross purposes." That is, where

KN(2)> KN(l) KN(B)
as in Figures 6.8(b), 6.9(b).

The eligible costs for VN—l( l=l) for this case are shown

*N-1""n-
in Fiqure 6.13 (as in Figure 6.9(b)}. By the following arguments
(each indicated on Figure 6.13), we can eliminate many of these candidate

costs from consideration over certain X1 regions:

1. As noted earlier (in 6.117), Proposition 5.2

.. R
eliminates VZ’L and V2'

Nel Nel from consideration

(costs corresponding to hedging to the "wrong"

sides of Vﬁ(xNIrN-l=l) discontinuities).

2. K (2)> R (1) implies that K, (1)< K, (2)hence

1,0 2,0 ;
< .
VN-l VN_1 (as functions of xN_l) So
2,0 X
VN_1 is not optimal over

xN€(eN_1(2)/a(l),GN_1(2)/a(l)). Similarly,




A .

Z'U . 2
VN-l is not optimal over (SN_1(3)/a(l),

: l,u _ 3,0
Oy (2)7a(1))  since V', = V',

functions of xN—l)'

3. v3,L > V3,U E VllU

N-1 > Vnel 3 Vnor For Xy o< 8y (2)/a(d),

so V3’L

. . - 1,R
W] IS not optimal here. Similarly, for V !

N-1
over xg > BN_1(3)/a(l).

Thus we see from Figure 6.13 that

Vl’U

N1 is optj:mal for xN-l< GN_l(l)/a(l)

. v2'Y is optimal for x > 8, (3)/a(l)

N-1

€ (GN_l(l)/a(l), GN_1(3)/a(l)) the three candidates

1
i,R _2,U _3,R . L.
VN—l' VN—l' VN—l are still eligible.
. . I3 l'R 2'U .

Solving for the intersections of VN—l and VN-l we find that
VN-l VN-l 0 at

LGN N L

N-1 a(l) - SN_1(2)

(6.146)

1 -—
= 0 Oy-1¢2 +J(GN_IQ)-ON_I(I))GN__l(Z)
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Figure 6.13: Eliminating candidate cost-to-go functions over different ‘
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The intersection in (6.146) that is greater than GN_1(2)/a(l)

. - oy @) | [ O, @)
-1 a(l) 801 (2)

This is the point at which the optimal candidate cost changes from

v to vz'U

N-1 N-1 ° Similarly, the optimal candidate cost changes from

2,0 3,L
Ve, to V[ at

. - @N-lfz)l_‘fl_ o
N-1 a(l) @N_l(2)

Collecting all of this information yields the following:

Fact 6.10: When ﬁN(2)< ﬁN(l) = ﬁN(S) (Case 2), the optimal

cost-to-go and control laws have

m _, (1)=5 (6.147)

pieces joined at X1 values

0., (1)
% 2, . »
Sp-1M = T R REWHRTIRW]
9 (2) 0 (1) (6.148)
Sg-1(2) = N?i) - yi- eN-l(z)
2 N-1
i A ‘/ R(1)+b% (K (1)
—2% ___ (r(1)+p> (DR (2)) [1-Y1- A
allyr(d) g R(1)+b° (1R (2)
(6.149)
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¢ 8yp(3) = =8, (2) (6.150)
3
- Sy () = =6, (1) (6.151) -

RO il R A

( 1,U . 3
> - < .4
$ vllix o) if x <8 (1)
§ VR 1) if 5. ()< x. <8 .(2) 3
N-1""N-1' N=-1"""— "N-1— "N-1
g V-1 Fy-1Fy-171= i 2,0
0 ’ i < <
: R R A
v3’L(x ,1) if § (3)< x_ <8 (4)
N-1""N-1 N-1 — "N=-1— 'N-1
< 3[U .
<
2 \ Vo1 Byepr D) 3F S (DS xg )

* (6.152)

Thus the optimal expected cost-to-go is given by (6.127) where

{KN_l(t:l), Heq(t:l): t=l,...,m ) (1)=5 } are the same as for the

N-

earlier case (as in 6.128)-(6.152)) except that

-* 2
- . _ o1 2 A _ .
:: GN_l(z.l) = b2(1) (R(L)+b (l)l%(l)) = GN_1(4.1) (6.153) :

GN_l(l:l) = GN_1(3:1) = GN_1(5:l)=0 .

The optimal control law is given by (6.135) where
" {L_y(t:1): t=1,...,m . (1)=5} is the same as for the earlier case »

(as in (6.136)-(6.138)) except that

..........



FN_1(2:1) =

= -F_ _(4:1)
N-1 (6.153)

Fy (11 = F _ (3:1) =F _ (5:1) =0 .

The XN value obtained by the application of the optimal control

law, as a function of xN»l' is given by (6.141l). Hence

a(l)R(1) xN
R(l)+b2(l)ﬁN(l) -1
-a-
x ( , =])= ,
NUN-L FN-1T T 2LED (6.154)
R(1l)+b (l)KN(Z)
+
[0} . e
a(l)R(1) < N
R(l)+b2(1>2N(3> N1 o

We see that for this case, hedging is to the other sidkof -a and
+a  (since VN(lerN_l=l) is now less on the opposite side of these

Xy values). In Figure 6.14, u ( =1) is shown for b(l)> 0.

N-1 ' *N-1FN-1

The control law increases discontinuously at xN_l=6N_l(2L where the

optimal strategy changes from hedging to the point -a € AN(l) to

driving Xy into AN(Z). Similarly, uN_l(xN_l,rN_l=l) increases at

xN_l=6N_l(3). Elsewhere it is continuous.




AUNXN- - 2 1

Figure 6.14: Control law uN—l(xN-l’rN-l

|
IR . 42U I o3k I_ 3u__
g T — | u
| | 1 avtky(@
R()
| I
| |
U"U :ll l
I
| |Hedge
| s -
a
| | ™ i
|
b |
3N.l,(1) 3n=1(2) 3n-113) 3@
T = rL { -
; l XN-1
lHedgel I
| _:- | T
} I J“‘Yg
l |
L
o \
I I 4 —ab(Ky(2)
| | R(1) |

ob (1R (2) R(1)+b2(1)f<N(1)
2 = TR -y - IR
R(1)+b° (1R (2)

y -
2, o
R(1)+b" (1)K, (1)
17 od;&; [KN(Z)_ <&2('L ¥ KN(2)>\/1' 2 TN ]
b (1) R(1)+b (l)l%‘(2)
=1) when

A HD
QN(]-)EKNHRKN(Z) (Case 2) and b(1)>0.
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ﬂl The value of . obtained by application of the optimal control

law to xN—l is shown in figure 6.15. Recall that in the earlier case

(where ﬁN(z)< Ry (1)

wm

EN(3)) we saw that the optimal closed loop
system was more stable than the open loop system in form 1. This need

not be true when ﬁN(2)> ﬁN(l) = ﬁN(3). In particular, the optimal

controller in form r=1

. 1is more stable than the open loop system for X1
values from which we do not hedge to a point.

. may be more stable or less stable than the open

loop system over x values from which we hedge

N-1

to a point, depending upon the values of the
quantities

2
b (l) P -A
L) and (KN(Z)' KN(l))

To see this we note that (as in the earlier case) for x regions

N-1
where the slope in Figure 6.15 is positive, the closed loop dynamics

na are

a(l) < a(l) i=1,2,3 .

KN(i)

But in the hedging regions xN_le(GN_l(l), GN_1(2)) and

X G(GN_1(3), 6N-1(4)) the optimal controller is more stable

N-1




.
.

A AR
.

»

/ 2, A
RU+EE(1K (1)
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XN avoidance
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¥ -
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8- (3) Sy XN-1

J RUN+B2(1) Ry(1) )
- -al1- [t1- 5
R(11+62(1)Ry(2)

i : = K (2)> K (1) =K (3). (case 2).
Figure 6.15: xN(xN-l’rN-l 1) when KN( ) N( ) N( ) (Cas
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if a(l)|xN_l|> o and less stable if a(l)|xN_l|< a. In these

hedging regions

|8y 2 < |xN_l| < |6N_1(1) |

hence from (6.148)~(6.151),

2 ~

2 R(L)+b (1)K (1)

a<1+ bT&—;-ﬁN(Z))(l- 1- 5 l}] )<( lla(1)<
R(1)+b° (1)K (2) -

(6.155)
b (l) A
a(l+ 1) K (1)) .

Thus, we have a(l)|xN_ll> o for all x in the hedging regions

N-1

unless

2 ~
R(1)+b (l)KN(l)
b b (1) &
( - KN(Z))( v — ><1. (6.156)

R(1)+b (l)KN(Z)

This can happen if and only if

Ky (1)-K (1) , b2 ©.157)
2 (1R R(1) .
KN(l)KN(Z)

That is, the optimal closed loop system will be less stable than
the open loop system in form 1 for some Xg-1 values where the

optimal strategy is to hedge to a point, if and only if

300

RN B A e Auiter e ems ave |
- - FEN . «




(1) The excess cost ﬁN(2)-§N(l) of being on
the wrong side of'the hedging point is

large enough

(2) the control effectiveness b2(1) is small
R(1)
enough.

Note that there are two regions of avoided xN values in Figure 6.15

(as in the earlier case). They are

2 A
R(1)+b (1)K (1)
xN¢ -0, -0 (l- \/1— N ))

R(1)+b° (1) R, (2)
(6.158)
R(1)+b2 (1) 4R (1)
xN¢ o l- 1- 2 ~ ’ o .
R{(1l)+b (l)KN(Z)
The width of each of these regions of xN avoidance is
2 PN
R{(1)+b (l)KN(Z)
a<a 1- <20 . (6.159)

R(1)+b2 (1) iN(l)

Comparing (6.159) with (6.145) we see that the width of these
regions of avoidance varies with q, bz(l)/R(l) and the savings from
hedging (here ﬁN(Z)-ﬁN(l)), as in the previous case.

Each region of avoidance is again associated with a joining point

where the slope of V (

= i i d i.e.
N-1 xN—l'rN-l 1) discontinuously decreases (i.e.,

6N_l(2) and GN_1(3) in this case).




.................

There are two different shapes that the expected cost-to-go

(

vN-l xN—l'rN-lgl) can taken when KN(2)> KN(l) = KN(3). These are

shown in Figure 6.16. In both Figures 6.16(a) and 6.16(b), the slope

of V (

N-1 xN_l,rN_l=l) has a negative discontinuity at GN_l(z) and

) 1(3), and is continuous elsewhere. For x _18(6

- . L(2)) the

n-11 Oy

optimal controller actively hedges to xN = -0 , The resulting optimal
expected cost~-to~go is a quadratic interpolation between Vl'U

: N-1
2,U .
. and V Similarly for =x

N—le(sN—l(B)' SN_1(4)). In this case

N-1°

(as opposed to Figure 6.10), the V;:g curve is below the V;if

curve.

The width of the one-step hedging regions for this case is

width of one- o bz(l) n n KN(z) KN(Z)
step hedging | = 0/\rD) KN(Z)-KN(l +

regions -ﬁN(l) R(l)/bz(l)

(6.160)

- (compare to (6.143)). The comments following (6.143) regarding the
width of these hedging regions apply for this case as well. Thus

when 0#0, the optimal expected cost-to-go V_ _(

N-1 xN-l'rN—lsl) for all

problems of the class formulated in Section 6.5 involves active

hedging to a point.




= e : T e T T e T T N N T TN N U v
[ - . N N A il AR RS - R AN el st s s e

EASAlPS Saie Sesss T T

ﬁlVNd(xN-"rNﬂ 1)
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a (2) R(1)+b (l)lsl(l)
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y 2 0y%
1 R() BT (LK (2) R(l)+b2(l)l§q(2)

24 R(1)

‘ , a KN(l) +

v 2 R(D 2,2

v b (1)K (1)
5 )

R . = ) >A EA . . .
Figure 6.16: VN—l(_xN-l’rN-l 1) when KN(Z) KN(l) KN(3) with (a) single
minimum and (b) local minima as well.
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(

When Figure 6.16(a) applies =1) has a single

VN-1 ¥N-1" N1

local minimum at xN—l=O' as in Case 1. But when Figure 6.16(b)

(

applies =1) has two additional local minima as well

V-1 -1 Tn-1

as the global minimum at x_ .=0. 1In this situation V ( )

N-1 N-1 F-1/Fn-1710

is not montone for x_ . <0 and x_ . > 0 (Note: in Figure 6.16(a)

N-1 N-1
> i i . > > .
0% Y but in Figure 6.16(b) we can have Y2y, or yl_yz)

The following proposition states necessary and sufficient condi-

tions for V (

N-1 =]1) to have local minima (for the problem

*n-1" *N-1
of Section 6.5):

Proposition 6.11 (Local minima)

Consider the problem of Section 6.5. ( =1) has a

V-1 ¥N-1 -1

single local minimum at zero if and only if the following condition

holds:

R_(2)-K_(1) 2
fN AKN < b({i) : (6.161)
R (1IK (2) R

If (6.161) does not hold then V&_ ( =]1) has two local

1 %=1 n-1

minima as well, at

- T -]
*N-1 " Ta(l) °  a(l) (6.162)




b i Nl SR DR R AR AP M St il A S R ) y s A

. VR -

each with value 1

o 1) - - ) - o -
-1 (a(l) * Py-1” ) - VN—l(a(l) * Fy-1 l) @Kyl N
(6.163) &

The proof of this is straightforward, and appears in Appendix C.10. ;

This proposition can be explained as follows:
vN—l(xN-l'rN—l=l) has local minima if and only if the

following conditions both hold:
A >A EA
(1) KN(Z) KN(l) KN(3)

(the costs are at "cross purposes")

and

(2) the control effectiveness

is small enough.

Thus the form transition probability discontinuity locations,
40, do not bear upon the existence of these local minima (and at
time k=N-1; a(l) does not effect them either).

Note that the condition (6.161) for local minima is the same
condition (6.157) for the optimal closed loop system to be less

stable than the open loop system (for some X1 values). In particular,

we can derive a relationship between the existence of local minima and
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the values of a(l) and ¢ in terms of the joining points where the i
slope of vﬁ-l(xN-l'rN—l=l) decreases. Clearly the local minima :
exist if and only if R
\
. lIR - )
min —_—<
vN--l a(l) GN-l(z) 3
X
N-1
min V3,L =2 5 (3) (6.164)
N-1 a(l) N-1 .
-1
Thus they exist if and only if
a(l)GN_l(2)> -0
(6.165)

<
a(l)SN_l(3) o
which means that the open loop drift a(l) would drive

X1 = GN_l(Z), S ) (3)

to the more costly sides of xN=-a and xN=a, respectively. But

(6.165) holds if and only if

2 A
2. R(1)+b° (1) R (1)
(1 + 2O KN(Z))(l- 1- " )<1

R(l)+b2(l)f%(2)

which illustrates the 0 independence of the existence of these

il dndedbbndictodnniandlil ool olac s o

local minima.

PO I B )
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We can extend these ideas to more general x-dependent

JIQ problems. A necessary condition for the existence of local !
minima in Vk(xk,rk=j) can be stated in terms of the conditional -
A . '

expected cost-to-go Vk(xk+1|rk—3) as follows: )
)

Proposition 6.12: Consider the problem of Proposition 5.1, where -
all of the x costs have only quadratic terms (i.e., S(j) = P(j) = y
HT(J) = GT(3)=0, jeM). 1If Vk+l(xk+llrk=j) is monotonely nonincreasing q

for X1 £ 0 and monotonely nondecreasing for Xeel > 0, then

Vk(xk,rk=j) has a single minimum.

Thus Vi+1 Fk=J) must be nonmonotone if Vi (%) ,rx=3) has a local
minimum. This proposition follows direction from pProposition 5.3 (part4).
Note that Proposition 6.12 does not provide necessary conditions for the

existence of additional local minima. For example‘, in case 2 problems where

bz(l) . KN(z)—KN(l)
R(1) -— A A
KN(l)KN(Z)

N-1

6.8(b)) but, by Proposition 6.11, vN-l(xN-l'rN-l

minimum at zero (as in Figure 6.16(a)).

we have Gﬁ(xNIr =1) nonmonotone for xN>0 and xN<0 (as in Figure

=1) has a single

This concludes our consideration of the last-stage solution for

the class of problems that are formulated in Section 6.5. We have ]

shown that :

-
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With the exception of problems having 0=0, there
are always regions of xN_l values from whicﬁ the
optimal controller hedges to a point.

The width of these hedging regions increases with

increasing

o bz(l)

2 ' ’R(D and IKN(l)-KN(2)| .

Except when q=0, there are always regions of avoided
Xy values. Each is associated with a joining

point where the slope of V, ( =1) decreases

r
, , N-1'%N-1""N-1
discontinuously.

The width of these regions of Xy avoidance increases

with increasing

2
b (1) A -A
% F a0 IKN(l) k(@] -

When iN(2)<<ﬁN(1) = iN(3) (Case 1), the optimal
closed loop system is more stable than the open

loop dynamics in form 1, for all x

N-1
When R (2)> K (L) = R (3) (case 2), the optimal
closed loop system is less stable for some of the
xN—l values from which the controller hedges to a

point if

KN(2)-KN(1) N b2(1)
R(1) )

EN(l)ﬁN(z)

rrarevovevey ¥

'A‘Lﬁ Jaeas 4 o ;v.‘:-l‘
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7. This same condition is necessary and sufficient

for the existence of local minima in V ( ).

N-1 xN—l'rN-l=l

6.7 Summary

We have now characterized the time-varying and steady-state
behavior of the endpieces and middlepieces of the optimal JLQ controller
(when (6.1)-(6.4)) hold and we have obtained bounds on the expected
costs-to-go that afford some description between these pieces. For
a special class of problems we have explored all of the possible
behaviors of the last time stage solution and have given some indication
of the issues which arise at the next time stage.

In the next chapter we will examine further the two problem cases
of sections 6.5-6.6. Under certain conditions these problems have
easily computable solutions that will enable us to gain insight into the
general steady-state behavior of JLQ problems with x-dependent forms.
An algorithm for solving the general scalar JLQ problem of Chapter 5
will also be presented and illustrated by numerical examples. In addition,
we will consider "finite look=-ahead" approximations of the optimal steady-

state controller.
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7. COMPUTATION AND TIME-VARYING BEHAVIOR OF
THE JLQ CONTROLLER

7.1 Introduction

In this chapter we conclude our examination of the noiseless,
scalar x-dependent JLQ control problem of chapters 5 and 6 with a
study of two topics in detail. These are

® the efficient computation of the optimal JLQ
controller of Proposition 5.1, using the qual-

itative and combinatoric results established in

chapters 5 and 6.

s the time varying behavior of the optimal controller
(as the number of stages from the terminal time

increases).

In section 7.2 we develop a solution algorithm for the general
problem of Prdposition 5.1. It is presented in flowchart form and
described in detail. The basic idea is to compute the optimal cost
function vk(xk’rk=j) at time stage k (and in each form j) one piece

at a time, starting on the left (with the left endpiece). Using

Propositions 5.2 and 5.3, the number of calculations and computations
- that this solution algorithm must make is greatly reduced from those

- of the "brute force" solution technique in chapter 5.

The solution algorithm developed in section 7.2 is applicable to

all problems satisfying the requirements of Proposition 5.1. This

al sl A A 8GR en
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class of problems is extremely rich. The resulting cptimal controllers
can exhibit a wide variety of qualitative behaviors. Analytical char-
acterizations of these JLQ controllers that are sufficiently general to
encompass the entire problem class tend to be uninformative, since so
many diverse behaviors must be simultaneously accounted for.

We have chosen in sections 7.3-7.6 to focus on problems that
lend insight into the kinds of qualitative JLQ controller behaviors that
are appropriate in fault-tolerant control applications. Our vehicle for
doing this is the single form-transition problem that was developed in
sections 6.5 and 6.6, We are particularly interested in comparing and
contrasting the qualitative behaviors of the optimal JLQ controllers in
two archetypical classes of problems. In one of these classes the twin
goals of high performance and high reliability are commensurate. In the
other class they are at cross purposes.

In sections 7.3 and 7.4 we illustrate the wide range of parametrically
determined, qualitatively different cases that can arise even in the single
form-transition problem of section 6.5. In particular we find conditions
which imply that the middlepiece and/or endpieces of the optimal expected
cost-to-go vk(xk, vk=l) coincide with the upper and lower bounds of
chapter 6 (that is, they are described by the same function of xk).

The facts established in sections 7.3 and 7.4 are used in sections
7.5 and 7.6 to obtain and study in detail classes of problems (mentioned
above) that are representative of  :ult-tolerant control problem applic
ations. For these problems the algorithm of section 7.2 reduces to the

solution of (increasingly many) sets of difference equations (as (N-Kk)
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increases). This makes these problems amenable to further detailed anal-
ysis and it lets us illustrate some of the controller properties and
qualitative issues that arise from the use of control to achieve both
reliability and performance goals. We can analyze the infinite time
horizon behavior of JLQ problems in these two classes and obtain the
optimal steady-state controllers as (N-k)-see since the optimal control-
ler at cach time can be obtained from che solution of increasingly many
difference equations without making the comparisons and tests in the

solution algorithm that are needed in general.

The steady-state solutions that are obtained for these two problem
classes exhibit a structure that suggests a "natural" approximation to
the steady-state optimal controller (both for these problems and the gener- .
al class of problems in chapter 5 that can be made arbitrarily close
to optimal. These approximations correspond to finite loock-ahead con-
trollers which ignore eventualities that occur bevond some fixed plan-
ning time. By ignoring the far future optimality is lost in these con-
trollers but the computational burden of determining them and the com-
plexity and cost of implementing them is reduced. This approximation
idea is developed in section 7.7. Finally in section 7.8 we summarize

the results of Part III of the thesis.

7.2 An Algorithm for the Off-line Determination of the Optimal Controllex

In this section we develop an algorithm that enables us to solve the

general scalar-x JLQ problem of Chapter 5. This algorithm is based upon
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application of the one-stage solution of Proposition 5.1 recursively, back-
wards in time, for each form j€M that the system can take.

The solution of Proposition 5.1 at a specific time k and from a
specific form 3j involves the computation and comparison of many quadrat-
ic cost functions. These cost functions correspond to single time steps
of constrained in x and unconstrained JLQ problems with x-independent
transition probabilities, as described in chapter 5. Fortunately many of
the candidate cost computations and comparisons that are indicated in the
constructive proof of Proposition 5.1 (in section 5.4) can be avoided, due
to the qualitative properties and facts that we have established in chape-
ters 5 and 6. Our algorithm takes advantage of these results.

The basic ideas of the algorithm can be summarized as follows:

1. PFor each form j€M at time k, we can compute Vk(xk,rk = j) and

along the axis of aCj)xk values. We start with the endpiece of
Vk(xk,rk =j) that cor.esponds to large negative values of a(])xk
. . . Re . N . .
(i.e., Viqulj) for a(j) > 0 and VK (xk.J) for a(j) < 0}, since
we know that this endpiece is optimal for sufficiently negative

a(j)xk (from Proposition 6.1).

2. As we sweep rightwards along the a(j)xk axis, we compare the

solutions of each of the constrained-in-xk+l, x-independent JLQ

control problems of step 3 in section 5.4. The optimal cost

Vk(xk’rk = j) at each X, value is the minimal value of these
constrained problem solutions, evaluated at X - We will say
313
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that a quadratic cost function is valid over a specific interval

=k

of a(j)xk values if it solves a constrained problem of step 3

section 5.4 over this interwval. That is
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Vt’L is valid for x, < k E
k — = a(j) ;
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